Practical hints for helping to manage brain trauma

Since the recent story on CNN (“He’s going to be better than he was before,” Jan. 18, 2014,) about the extraordinary recovery of Grant Virgin from severe brain trauma, I have gotten a lot of requests for information. Since I have been doing this protocol for more than seven years after first working with Dr. Julian Bailes on the equally remarkable recovery of Randal McCloy Jr. (the sole survivor of the Sago mine disaster in 2006) and others (1,2), I can offer some broad guidelines. Make no mistake, each case is different, but these guidelines will considerably help your decision-making process.

What Type of Fish Oil to Use


When is comes to treating brain trauma, purity and potency of the omega-3 product count. All fish and all fish-oil products are contaminated with various toxins. The most important is polychlorinated biphenyls or PCBs. These are known neurotoxins. It makes little sense giving someone a fish-oil product that is rich in PCBs. One of the dirty secrets of the fish-oil manufacturing industry is that it is extremely difficult to remove PCBs from a final product. In fact, it is so difficult, the industry tries to ignore it. Making a statement that a fish-oil product is free from PCBs is an outright lie. It is equally ridiculous to state that the PCBs levels in its products are lower than the international standards. Those international PCB standards (90 parts per billion or ppb) are so lax that virtually any fish-oil product in the supermarket is going to exceed them. Of course, if you want to heal the brain, then I would recommend looking for the purest fish oil you can find. If you are even considering using fish oil, make sure that the levels of total PCBs are less than 5 ppb. This is 18 times lower than the international standard. Using this more rigorous criterion of purity, your choices become very limited. Furthermore, PCB levels will vary from lot to lot. So you want to make sure that the lot you are actually using contains less than 5 ppb. Go to the product’s website or call the manufacturer. If the manufacturers can’t supply that data, it means they don’t know. If they said it is pure, then they mean it might pass the very lax international standards. Here’s a good rule about fish oils: Trust but always verify. PCB testing is expensive but so is saving a brain. Of course, if you don’t care about potential PCB accumulation in the brain, then use the cheapest fish-oil product you can find.


You are going to have to use a lot of fish oil to put out the inflammation in the brain and to rebuild it. Therefore, the potency of the fish oil counts. I would never recommend any fish-oil product containing any less than 60% EPA and DHA. Usually the higher the potency of the fish oil, the higher the purity, but not always. Removal of PCBs is very different than increasing omega-3 fatty acid potency. I have tested many high-potency fish oils that also have high PCB levels. Likewise, the omega-3 fatty acids levels will vary from lot to lot. Before you use any omega-3 fatty-acid product, ask for the potency of that particular lot. If company representatives can’t provide it or say it meets their standards, then it means they don’t really know.

The fish oil needs to contain both EPA and DHA. EPA puts out the inflammation in the brain, and DHA helps rebuild the brain. You need both. I usually recommend a 2:1 ratio of EPA to DHA as that is the ratio I have used for several years with great success.

Omega-3 fatty acids are prone to oxidation, which leads to rancidity. The rancidity comes from breakdown products of the fatty acids into aldehydes and ketones that can cause damage to the DNA. That’s why there is an international rancidity standard (called total oxidation or TOTOX) that governs all edible oil trading in the world. Before you use any fish oil product, ask for the TOTOX levels of the finished product (not the raw materials). If it is less than 26 meq/kg (the upper limit for an edible oil), then it is OK to use. If not, don’t even consider it.


Even if you if you have a high-quality fish-oil product, you are going to need a lot for brain injuries. This will usually be in the range of 10-15 grams of EPA and DHA per day. That’s why you need the high-purity and high-potency fish oil. Because of the high amounts, it will have to be given in a liquid format. Why the high doses? Because you have to put out the fire in the brain before you can rebuild it.

The levels of fish oil needed are based on testing, not guessing. The best test for the levels of fish oil required is the ratio of two fatty acids in the blood. One is arachidonic acid (AA), and the other is EPA. Why this is important is because AA causes inflammation, and EPA reverses inflammation. You measure the levels of AA and EPA using a simple finger-stick blood test. The AA/EPA ratio is not a standard clinical test, but it has been in medical research for nearly 30 years, starting first at Harvard Medical School (3). The AA/EPA ratio will tell you how much a pure fish oil product you need as you want the AA/EPA ratio to be in the range of 1.5 to 3. If the AA/EPA ratio is higher than 3, you will need more fish oil. If AA/EPA is less than 1.5, you will need less fish oil. Maintaining the AA/EPA between 1.5 and 3 addresses the largest concern of using high-dose fish oil, which is potential bleeding. I chose an AA/EPA ratio of 1.5 as my lower limit since that is what it is in the Japanese population, and they don’t bleed to death (4-11).

The most inexpensive test for the AA/EPA ratio can be found at

Why drugs don’t work, and fish oil does

With severe brain trauma, the usual response of the physician is “we just have to wait”. The reason why is because there are no drugs that can cross the blood-brain barrier to put out the inflammation in the brain. That is not true with omega-3 fatty acids. They can easily enter the brain if there are high enough levels in the blood. What is the correct level in the blood? The AA/EPA ratio will tell you. Not only should the AA/EPA ratio be between 1.5 and 3, but also the EPA levels should be greater than 4% of the total fatty acids in the blood.

What Else?

When using high levels of fish oil even if it is pure and potent, you still have to emulsify it to reduce the size of oil droplets for better absorption. One of the best methods to emulsify liquid fish oil is to mix it with either a seaweed or an aloe vera product to reduce the size of the oil droplets to increase the absorption into the blood.

You also have to provide extra anti-oxidant protection to protect the omega-3 fatty acids from oxidation. The best way is using polyphenols to be mixed with the fish oil before administration. Adding extra virgin olive oil is a good choice. Adding highly purified polyphenol extracts to the liquid fish oil is a better choice.

What to expect

Each case is different. Based on my experience if you are using the correct amount of omega-3 fatty acids, you should see the beginnings of a response within 60 days. In Grant’s case, it was two days. If you do, then continue the same level of fish oil since putting out the inflammatory fire is only the first step of the process. The next step is rebuilding the brain. I would suggest monitoring the AA/EPA ratio every 30 days for the first 60 days and then every 60 days thereafter to make sure you are giving the right amount of fish oil.

Most importantly, this is not a Mr. Wizard home experiment. You should always be working with your physicians, not against them. They will also need education in the use and safety of high-dose fish oil, but this short summary is a good start.

Don’t expect any reimbursement from your insurance company for the use of the fish oil or AA/EPA testing. It may seem expensive, but compared to the human suffering of not trying to rebuild the brain, the costs of both the fish oil and AA/EPA testing are minor. I would also consider using flexible- spending health-care accounts if you have access to them to lower the overall cost, since they are based on pre-tax income.

Taking fish oil and following an anti-inflammatory diet is key

One of the reasons for Grant Virgin’s rapid progress was the fact that he was already taking moderate doses of fish oil for a medical condition. This meant he already had some reserve capacity in the body and the brain to reduce the inflammatory burden caused by a hit-and-run accident. You never know when brain trauma will occur. Maintaining a relatively low AA/EPA ratio in the blood is your best insurance policy for protection against future brain trauma if it does strike. You don’t have to be as aggressive as in the treatment phase, but aim for keeping the AA/EPA ratio between 5 and 10 in the blood. For comparison, the average American has an AA/EPA ratio of 20 (12). When dealing with brain trauma, an ounce of prevention is worth pounds of cure.

Finally, to accelerate the healing and rebuilding of the brain, you want to be following an anti-inflammatory diet (13-15). An anti-inflammatory diet is one that reduces the production of AA that drives inflammation in the brain. The less AA you have in the blood, the less AA gets into the brain. Try to keep the AA level in the blood to less than 9% of the total fatty acids. This takes more work than simply giving fish oil, but the more you reduce the levels of AA in the blood, the less high-dose fish you will need to maintain the AA/EPA ratio required to accelerate the healing and rebuilding process in the brain.


  1. Roberts L, Bailes J, Dedhia H, Zikos A, Singh A, McDowell D, Failinger C, Biundo R, Petrick J, and Carpenter J. “Surviving a mine explosion.” J Am Coll Surg 207:276-283 (2008)
  2. Sears B, Bailes J, and Asselin B. “Therapeutic use of high-dose omega-3 fatty acids to treat comatose patients with severe brain injury.” PhamaNutrition 1: 86-89 (2013)
  3. Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW, Cannon JG, Rogers TS, Klempner MS, Weber PC, Schaefer EJ, Wolff SM, and Dinarello CA. “The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells.” N Engl J Med 320:265-271 (1989)
  4. Swails WS, Bell SJ, Bistrian BR, Lewis EJ, Pfister D, Forse RA, Kelly S, Blackburn GL. “Fish-oil-containing diet and platelet aggregation.” Nutrition 9:211-217 (1993)
  5. Parkinson AJ, Cruz AL, Heyward WL, Bulkow LR, Hall D, Barstaed L, and Connor WE. “Elevated concentrations of plasma omega-3 polyunsaturated fatty acids among Alaskan Eskimos”. Am J Clin Nutr 59:384-388 (1994)
  6. Eritsland J, Arnesen H, Seljeflot I, andKierulf P. “Long-term effects of n-3 polyunsaturated fatty acids on haemostatic variables and bleeding episodes in patients with coronary artery disease.” Blood Coagul Fibrinolysis 6:17-22 (1995)
  7. Watson PD, Joy PS, Nkonde C, Hessen SE, and Karalis DG.
    Comparison of bleeding complications with omega-3 fatty acids + aspirin + clopidogrel–versus–aspirin + clopidogrel in patients with cardiovascular disease. Am J Cardiol 104:1052-1054 (2009)
  8. Salisbury AC, Harris WS, Amin AP, Reid KJ, O’Keefe JH, and Spertus JA.
    “Relation between red blood cell omega-3 fatty acid index and bleeding during acute myocardial infarction.” Am J Cardiol 109:13-18 (2012)
  9. Larson MK, Ashmore JH, Harris KA, Vogelaar JL, Pottala JV, Sprehe M, and Harris WS. “Effects of omega-3 acid ethyl esters and aspirin, alone and in combination, on platelet function in healthy subjects.” Thromb Haemost 100:634-641 (2008)
  10. Harris WS. “Expert opinion: omega-3 fatty acids and bleeding-cause for concern?” Am J Cardiol 99:44C-46C (2007)
  11. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S,Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, and Shirato K. “Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.” Lancet 369: 1090-1098 (2007)
  12. Harris WS, Pottala JV, Varvel SA, Borowski JJ, Ward JN, and McConnell JP. “Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: observations from 160,000 patients.” Prostaglandins Leukot Essent Fatty Acids 88:257-263 (2013)
  13. Sears B. The Zone. Regan Books. New York, NY (1995)
  14. Sears B. The OmegaRx Zone. Regan Books. New York, NY (2002)
  15. Sears B. The Anti-inflammation Zone. Regan Books. New York, NY (2005)

Anti-aging made easy

Anti-aging diets have been around since the 15th century, starting with the books written by Luigi Cornaro. Although I addressed the history of Luigi in my book The Anti-Aging Zone written more than a decade ago, it bears repeating. Finding himself near death at age 35, Luigi Cornaro went on a strict calorie-restricted diet consisting primarily of an egg yolk, some vegetable soup, small amounts of locally grown fruits and vegetables, a very small amount of coarse, unrefined bread and about three glasses of red wine per day. He wrote his first anti-aging book (The Sure and Certain Method of Attaining a Long and Healthful Life) at age 83 and his third book at age 95. He finally died at age 99. At the end of his life he was still mentally sharp and physically active.

Isn’t that what anti-aging is supposed to be? Living a long and full life. But do you have to embark on such a restrictive diet? Can’t you just take a pill or alter a gene? In the Aug. 29th issue of Cell Reports, there is an article that suggests it might be possible to alter such a gene (1). The gene in question mTOR expresses two proteins mTORC1 and mTORC2. mTOR is shorthand for “mammalian target of rapamycin”. Rapamycin is an antibiotic isolated from the soil of Easter Island and is also a powerful immune suppressor. It has been demonstrated that the earlier you give rapamycin to mice, the more you slow their aging process (2,3). In this study researchers genetically reduced the activity of mTOR gene by 75% so it was like giving rapamycin at birth. As might be expected, there was an even greater increase in overall lifespan of the mice corresponding to adding another 16 years of life to humans. These genetically altered mice also appeared to maintain their cognitive skills to a greater extent than the controls, but on the down side they also had less muscle mass and bone density. More ominously, the genetically altered mice also appeared to be more susceptible to infections in old age, suggesting that their immune systems were compromised.

OK so you get some tradeoffs by inhibiting mTOR gene expression: A longer life with greater frailty and decreased immune function as you age. Obviously, you don’t want anyone tinkering with your genes because no one knows the outcome. However, you can tweak gene expression using diet.

One way to reduce mTOR activity is to simply reduce the levels of the amino acid leucine in your diet. This is because leucine stimulates mTOR. If you stimulate mTOR, then you build bigger and stronger muscles. That’s why body builders use a lot isolated dairy protein powders that are rich in leucine as well as eat a lot of egg whites (an even richer source of leucine). On the other hand, vegans don’t eat dairy or eggs and therefore get very little dietary leucine, and their lack of muscles show it. Unfortunately, one of the biggest problems with aging is lack of muscle mass and a less than optimal immune system. So just turning down mTOR activity is probably not sufficient for healthy aging. On the other hand, calorie restriction (like that of Luigi Cornaro) stimulates another gene known as SIRT1 that causes the increased expression of the “enzyme of life” (AMP kinase) that controls metabolism and slows the aging process. You can also stimulate SIRT1 by consuming lots of polyphenols. Can’t you just fine-tune both mTOR and AMP kinase and maximize your quality of life as you age?

Of course you can by having a dietary program consisting of consuming small (but not excessive) amounts of leucine in the blood throughout the day. You can do this by eating no more high-quality protein than you can fit on the palm of your hand. This is about 3 ounces for women and 4 ounces for men. This will activate the mTOR that is necessary to build and maintain muscle and bone. By consuming large amounts of non-starchy vegetables, you are consuming polyphenols that stimulate AMP kinase. By doing both, you are constantly balancing mTOR and AMP kinase but without the rigid calorie restriction undertaken by Luigi Cornaro nearly 500 years ago. You are still restricting calories, but now in the range of 1,200 to 1,500 calories per day compared to the estimated 600 calories per day that Luigi was consuming.

Just to cover your bets since you would be consuming more leucine than Luigi did, you need to counter balance that with more polyphenols most likely by supplementation. Consuming one to two glasses of red wine per day is one way to get extra polyphenols. A better way is to use purified extracts rich in polyphenols, but without the alcohol. Finally for good measure, you want to take at least 2.5 grams of EPA and DHA as that level has been shown to increase the levels of telomeres that further decrease the rate of aging (4).

But isn’t that the Zone Diet? Of course it is, and that’s why I wrote The Anti-Aging Zone more than a decade ago. It was true then, and it is still true today.


  1. Wu JJ, Chen EB, Wang JJ, Cao L, Narayan N, Fergusson MM, Rovira II, Allen M, Springer DA, Lago CU, Zhang S, DuBois W, Ward T, deCabo R, Garilova O, Mock B, and Finkel T. “Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression.” Cell Reports 4:1-8 (2013)
  2. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA,Fernandez E, and Miller RA. “Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.” Nature 460: 395-395 (2009)
  3. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R; Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, and Strong R. “Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice.” J Gerontol A Biol Sci Med Sci 66:191-201 (2011)
  4. Kiecolt-Glaser JK. Epel ES. Belury MA. Andridge R, Lin J, Glaser R, Malarkey WB, Hwang BS, and Blackburn E. “Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial.” Brain Behav Immun 28:16-24 (2013)

What is Cellular Inflammation?

People (including virtually all physicians) are constantly confused what cellular inflammation is. So I decided to take the opportunity to explain the concept in more detail.

There are two types of inflammation. The first type is classical inflammation, which generates the inflammatory response we associate with pain such as, heat, redness, swelling, pain, and eventually loss of organ function. The other type is cellular inflammation, which is below the perception of pain. Cellular inflammation is the initiating cause of chronic disease because it disrupts hormonal signaling networks throughout the body.

Definition of Cellular Inflammation

The definition of cellular inflammation is increased activity of the gene transcription factor know as Nuclear Factor-kappaB (NF-κB). This is the gene transcription factor found in every cell, and it activates the inflammatory response of the innate immune system. Although the innate immune system is the most primitive part of our immune response, it has been resistant to study without recent breakthroughs in molecular biology. In fact, the 2011 Nobel Prize in Medicine was awarded for the earliest studies on the innate immune system and its implications in the development of chronic disease.

There are several extracellular events through which NF-κB can be activated by distinct mechanisms. These include microbial invasion recognized by toll-like receptors (TLR), generation of reactive oxygen species (ROS), cellular generation of inflammatory eicosanoids, and interaction with inflammatory cytokines via defined cell surface receptors. We also know that several of these initiating events are modulated by dietary factors. This also means that appropriate use of the diet can either turn on or turn off the activation of NF-κB. This new knowledge is the foundation of anti-inflammatory nutrition (1-3).

Understanding Cellular Inflammation

Although the innate immune system is exceptionally complex, it can be illustrated in a relatively simple diagram as shown below in Figure 1.

Figure 1. Simplified View of the Innate Immune System

Essential fatty acids are the most powerful modulators of NF-κB. In particular, the omega-6 fatty acid arachidonic acid (AA) activates NF-κB, whereas the omega-3 fatty acid eicosapentaenoic acid (EPA) does not (4). Recent work suggests that a subgroup of eicosanoids known as leukotrienes that are derived from AA may play a significant factor in NF-κB activation (5,6)

Extracellular inflammatory cytokines can also activate NF-κB by their interaction with specific receptors on the cell surface. The primary cytokine that activates NF-κB is tumor necrosis factor (TNF) (7). Toll-like receptors (TLR) are another starting point for the activation of NF-κB. In particular, TLR-4 is sensitive to dietary saturated fatty acids (8). The binding of saturated fatty acids to TLR-4 can be inhibited by omega-3 fatty acids such as EPA. Finally ROS either induced by ionizing radiation or by excess free radical formation are additional activators of NF-κB (9).

Anti-inflammatory Nutrition To Inhibit Cellular Inflammation

Anti-inflammatory nutrition is based on the ability of certain nutrients to reduce the activation of NF-κB.

The most effective way to lower the activation of NF-κB is to reduce the levels of AA in the target cell membrane thus reducing the formation of leukotrienes that can activate NF-κB. Having the patient follow an anti-inflammatory diet, such as the Zone Diet coupled with the simultaneous lowering omega-6 fatty acid intake are the primary dietary strategies to accomplish this goal (1-3).

Another effective dietary approach (and often easier for the patient to comply with) is the dietary supplementation with adequate levels of high-dose fish oil rich in omega-3 fatty acids, such as EPA and DHA. These omega-3 fatty acids taken at high enough levels will lower AA levels and increase EPA levels. This change of the AA/EPA ratio in the cell membrane will reduce the likelihood of the formation of inflammatory leukotrienes that can activate NF-κB. This is because leukotrienes derived from AA are pro-inflammatory, whereas those from EPA are non-inflammatory. The increased intake of omega-3 fatty acids is also a dietary approach that can activate the anti-inflammatory gene transcription factor PPAR-γ (10-12), decrease the formation of ROS (13) and decrease the binding of saturated fatty acids to TLR-4 (14). This illustrates the multi-functional roles that omega-3 fatty acids have in controlling cellular inflammation.

A third dietary approach is the adequate intake of dietary polyphenols. These are compounds that give fruits and vegetables their color. At high levels they are powerful anti-oxidants to reduce the generation of ROS (15). They can also inhibit the activation of NF-κB (16).

Finally, the least effective dietary strategy (but still useful) is the reduction of dietary saturated fat intake. This is because saturated fatty acids will cause the activation of the TLR-4 receptor in the cell membrane (8,14).

Obviously, the greater the number of these dietary strategies implemented by the patient, the greater the overall effect on reducing cellular inflammation.

Clinical Measurement of Cellular Inflammation

Since cellular inflammation is confined to the cell itself, there are few blood markers that can be used to directly measure the levels of systemic cellular inflammation in a cell. However, the AA/EPA ratio in the blood appears to be a precise and reproducible marker of the levels of the same ratio of these essential fatty acids in the cell membrane.

As described above, the leukotrienes derived from AA are powerful modulators of NF-κB. Thus a reduction in the AA/EPA ratio in the target cell membrane will lead to a reduced activation of NF-κB by decreased formation of inflammatory leukotrienes. The cell membrane is constantly being supplied by AA and EPA from the blood. Therefore the AA/EPA ratio in the blood becomes an excellent marker of the same ratio in the cell membrane (17). Currently the best and most reproducible marker of cellular inflammation is the AA/EPA ratio in the blood as it represents an upstream control point for the control of NF-κB activation.

The most commonly used diagnostic marker of inflammation is C-reactive protein (CRP). Unlike the AA/EPA ratio, CRP is a very distant downstream marker of past NF-κB activation. This is because one of inflammatory mediators expressed in the target cell is IL-6. It must eventually reach a high enough level in the blood to eventually interact with the liver or the fat cells to produce CRP. This makes CRP a more long-lived marker in the blood stream compared to the primary inflammatory gene products (IL-1, IL-6, TNF, and COX-2) released after the activation of NF-κB. As a consequence, CRP is easier to measure than the most immediate inflammatory products generated by NF-κB activation. However, easier doesn’t necessarily translate into better. In fact, an increase AA/EPA ratio in the target cell membrane often precedes any increase of C-reactive protein by several years. An elevated AA/EPA ratio indicates that NF-κB is at the tipping point and the cell is primed for increased genetic expression of a wide variety of inflammatory mediators. The measurement of CRP indicates that NF-κB has been activated for a considerable period of time and that cellular inflammation is now causing systemic damage.


I believe the future of medicine lies in the control of cellular inflammation. This is most effectively accomplished by the constant application of anti-inflammatory nutrition. The success of such dietary interventions can be measured clinically by the reduction of the AA/EPA ratio in the blood.


  1. Sears B. The Anti-Inflammation Zone. Regan Books. New York, NY (2005)
  2. Sears B. Toxic Fat. Thomas Nelson. Nashville, TN (2008)
  3. Sears B and Riccordi C. “Anti-inflammatory nutrition as a pharmacological approach to treat obesity.” J Obesity doi:10.1155/2011/431985 (2011)
  4. Camandola S, Leonarduzzi G,Musso T, Varesio L, Carini R, Scavazza A, Chiarpotto E, Baeuerle PA, and Poli G. “Nuclear factor kB is activated by arachidonic acid but not by eicosapentaenoic acid.” Biochem Biophys Res Commun 229:643-647 (1996)
  5. Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, and Miller YI. “12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice.” PLoS One 4:e7250 (2009)
  6. Chakrabarti SK, Cole BK, Wen Y, Keller SR, and Nadler JL. “12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.” Obesity 17:1657-1663 (2009)
  7. Min JK, Kim YM, Kim SW, Kwon MC, Kong YY, Hwang IK, Won MH, Rho J, and Kwon YG. “TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells.” J Immunol 175: 531-540 (2005)
  8. Kim JJ and Sears DD. “TLR4 and Insulin Resistance.” Gastroenterol Res Pract doi:10./2010/212563 (2010)
  9. Bubici C, Papa S, Dean K, and Franzoso G. “Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance.” Oncogene 25: 6731-6748 (2006)
  10. Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, Moorhead JF, and Varghese Z. “EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: Evidence for a PPAR-gamma-dependent mechanism.” Kidney Int 67: 867-874 (2005)
  11. Kawashima A, Harada T, Imada K, Yano T, and Mizuguchi K. “Eicosapentaenoic acid inhibits interleukin-6 production in interleukin-1beta-stimulated C6 glioma cells through peroxisome proliferator-activated receptor-gamma.” Prostaglandins LeukotEssent Fatty Acids 79: 59-65 (2008)
  12. Chambrier C, Bastard JP, Rieusset J, Chevillotte E, Bonnefont-Rousselot D, Therond P, Hainque B, Riou JP, Laville M, and Vidal H. “Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma.” Obes Res 10: 518-525 (2002)
  13. Mas E, Woodman RJ, Burke V, Puddey IB, Beilin LJ, Durand T, and Mori TA. “The omega-3 fatty acids EPA and DHA decrease plasma F(2)-isoprostanes.” Free Radic Res 44: 983-990 (2010)
  14. Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, and Hwang DH. “Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids.” J Lipid Res 44: 479-486 (2003)
  15. Crispo JA, Ansell DR, Piche M, Eibl JK, Khaper N, Ross GM, and Tai TC. “Protective effects of polyphenolic compounds on oxidative stress-induced cytotoxicity in PC12 cells.” Can J Physiol Pharmacol 88: 429-438 (2010)
  16. Romier B, Van De Walle J, During A, Larondelle Y, and Schneider YJ. “Modulation of signaling nuclear factor-kappaB activation pathway by polyphenols in human intestinal Caco-2 cells.” Br J Nutr 100: 542-551 (2008)
  17. Yee LD, Lester JL, Cole RM, Richardson JR, Hsu JC, Li Y, Lehman A, Belury MA, and Clinton SK. “Omega-3 fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition.” Am J Clin Nutr 91: 1185-1194 (2010)

The key to a healthy gut

Most people think all you need for a healthy gut is to consume bacterial-fortified yogurt products. In reality, the balance of bacteria in your gut may hold a key toward managing systemic inflammation in our bodies.

First of all, there are a lot of bacteria in our guts. The human body contains about 100 trillion cells, but the number of bacteria in the gut is 10 times greater in number. Furthermore, these bacteria are not just taking up space; they are actually providing numerous useful functions that make them a symbiotic “organ” to our own body. In particular, they can ferment carbohydrates to provide additional energy, make various vitamins, break down toxins we might ingest, and help prevent the growth of pathogenic bacteria.

Although there are literally millions of different bacteria in the world, only about 500 species actually reside in our guts. We also know that these gut bacteria can be further divided into three distinct bacterial ecosystems (1). Just like there are four unique blood groups that can classify every human, we also have three distinct bacterial systems. Once one of these systems becomes established in the gut, it begins to alter the gut environment that only certain species of other bacteria can follow and safely begin their symbiotic relationship with us.

So how does each ecosystem of bacteria keep out the bad apples (like Salmonella)? First of all, the bacteria in each distinct ecosystem have to alert our own immune cells in the intestine that they are friends, not foes. Apparently they have learned how to suppress the immune system in our own cells so they can co-exist in our gut (2). However, I believe even though these ecosystems of bacteria can be recognized as friends and not foes, they still need unique nutrients to help them act as the first line of defense against millions of other harmful bacteria.

Those nutrients are polyphenols. In the plant world, these polyphenols act as antibiotics against microbial attack. There is evidence that the “good” bacteria in our gut can use them as a means to help ward off invading bacteria that threaten our own unique bacterial fingerprint. Of course, the only way we can continue to help our unique bacterial partners in our gut is to continue to eat lots of fruits and vegetables that are rich in polyphenols. That’s why your grandmother told you to eat an apple a day to keep the doctor away.


  1. Arumugam M, Raes J, Pelletier E, et al. “Enterotypes of the human gut microbiome.” Nature DOI: 10.1038/nature09944 (2011)
  2. Round JL, Lee SM, Li Jennifer, Tran G, Bana J, Chatila TA and Mazmanian SK. “The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota.” Science DOI:10.1126/scienc.1206095 (2011)
  3. Moreno S, Scheyer T, Romano CS, and Vojnov AA. “Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition.” Free Radic Res 40: 223-231 (2006)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Another new wrinkle in the cholesterol story

One of the great marketing successes of the pharmaceutical industry has been the linkage between LDL cholesterol levels and heart disease. In essence, the message, “if your LDL cholesterol is high, you are going to die,” is powerful. Unfortunately, the data state otherwise.

It was known in the mid 1990s that oxidized LDL was the primary suspect in the development of atherosclerotic lesions; not natural, non-oxidized LDL. But it was also at this time that the first statin studies began to appear, and that gave the pharmaceutical industry a patented drug to “prevent” heart disease (2). It was such a good story to tell and an even better one to sell. Unfortunately, as I pointed out in an earlier blog, it has never held up well against unbiased scrutiny, especially in patients with high cholesterol levels but without any heart disease.

Part of the reason lies in the data. Shown below is the correlation of LDL cholesterol to heart disease

You can see from this data that there is a higher percentage of cardiovascular disease patients with high LDL cholesterol levels compared with very low levels, but not that much. This explains why about half the people who die from heart disease have normal LDL cholesterol levels (less than 130 mg/dl). It also means that high LDL cholesterol is not a very good predictor of heart disease.

On the other hand, a very different picture emerges if you look at the levels of oxidized LDL levels as shown below.

Even without a background in statistics you can see a very striking relationship in the prediction of heart disease with increasing levels of oxidized LDL levels.

So why don’t physicians use oxidized LDL levels as an indicator of heart disease risk? First, the test is much more difficult to do than a simple cholesterol test. Second, it ruins a great story that is easy to communicate to the patient. Third, the best way of reducing oxidized LDL levels is natural anti-oxidants, such as polyphenols, that have no patent protection (3,4). Reducing LDL cholesterol is simple. Just take a statin drug for the rest of your life. Reducing oxidized LDL cholesterol requires having plenty of antioxidants in your diet with polyphenols the most powerful.

Now there is another new entry into the LDL story. This is “super-sticky” LDL. In an online pre-publication, it was demonstrated that this new type of LDL particle may be even worse than oxidized cholesterol in promoting the development of heart disease (5). This “super-sticky” LDL comes from the formation of advanced glycosylation end products (AGEs). I described this formation of protein-carbohydrate linkages as an integral part of the aging process in my book, “The Anti-Aging Zone,” published more than a decade ago (6).

The best way to reduce the production of “super-sticky” LDL is to reduce blood sugar levels. This helps explain why individuals with diabetes are two to three times more likely to develop heart disease. The best way to reduce elevated blood sugar is the Zone diet. That’s why the latest dietary recommendations for the treatment of diabetes by the Joslin Diabetes Research Center at Harvard Medical School are essentially identical to the Zone diet.

Heart disease remains the number-one cause of death in America. Unfortunately, it is more complex than “taking a statin a day to keep death away”.


  1. Maor I and Aviram M. “Oxidized low-density lipoprotein leads to macrophage accumulation of unesterified cholesterol as a result of lysosomal trapping of the lipoprotein hydrolyzed cholesterol ester.” J Lipid Res 35: 803-819 (1994)
  2. Simvastatin Study Group. “Randomized trial of cholesterol lowering in 4,444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S).” Lancet 344: 1383-1389 (1994)
  3. Shafiee M, Carbonneau MA, Urban N, Descomps B, and Leger CL. “Grape and grape seed extract capacities at protecting LDL against oxidation generated by Cu2+, AAPH or SIN-1 and at decreasing superoxide THP-1 cell production.” Free Radic Res 37: 573-584 (2003) (ISSN: 1071-5762)
  4. Chen CY, Yi L, Jin X, Mi MT, Zhang T, Ling WH, and Yu B. “Delphinidin attenuates stress injury induced by oxidized low-density lipoprotein in human umbilical vein endothelial cells.” Chem Biol Interact 183: 105-112 (2010)
  5. Rabbani N, Godfrey L, Xue M, Shaheen F, Geoffrion M, Milne R, and Thornalley PJ. “Glycation of LDL by methylglyoxal increases arterial atherogenicity.” Diabetes 60 doi:10.2337/db09-1455 (2011)
  6. Sears B. “The Anti-Aging Zone.” Regan Press. New York, NY (1999)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Is there an obesity gene?

When I first heard about the discovery of a potential obesity gene on the news, I ignored it. After all, a gene only codes for a single protein, and there are about 25,000 genes of which nearly 1,000 seem to be associated with obesity. Nonetheless, I decided to read the research paper in its pre-publication form (1). Even though it is an incredibly scientifically dense paper, rich in genetic jargon, it finally did it begin to make sense.

The protein for which the gene in question codes is called a transcription factor. Transcription factors are the key players in the process of transferring hormonal signals from the surface of the cell to ultimately generate the gene expression of new proteins. As I explained in my book, “Toxic Fat,” nuclear factor-κB (NF-κB) is the transcription factor that turns on the genetic expression of more proteins that leads to cellular inflammation (2).

The transcription factor in this article, known as KLF14, seems to be related to turning on the metabolic responses that lead to insulin resistance, obesity and metabolic syndrome.

Transcription factors have been around for hundreds of millions of years, and they have been highly conserved by evolution because they work so effectively to fine tune gene expression. This might be expected since they are the key players in turning genes “off” and “on” inside the cell. Since they have been around for a long time, this also means that there are natural compounds (usually nutrients) that are instrumental in controlling their activity. For NF-kB (the master regulatory switch for inflammation), it is known that leukotrienes derived from arachidonic acid activate this transcription factor (3,4), whereas omega-3 fatty acids and polyphenols inhibit its activation (5-7). It is very likely the same nutrients may do the same for the activity of the KLF14 transcription factor. From an evolutionary point of view this makes common sense since in less developed organisms (like the fruit fly), the control of fat, metabolism and immunity are found in a single organ known as fat bodies (8).

As I have pointed out in my books, increased cellular inflammation is the first step toward metabolic dysfunction. This is why any decrease in nutrients like omega-3 and polyphenols or any corresponding increase in nutrients like arachidonic acid may be common nutrient control points that dramatically influence our future health. Obviously, as the balance of these nutrients change, their effects on various transcription factors will amplify their impact on gene expression.

A more ominous implication from this study is that the gene mutations that gave rise to increased insulin resistance came only from the mother. This may be the link to understand how fetal programming transmits epigenetic information from one generation to the next. The combination of fetal programming with radical changes in the human diet may well prove to be a deadly combination for our future health and longevity.


  1. Small KS, Hedman AK, Grunberg E, Nica AC, Thorleissson G, Kong A, Thersteindottir U, Shin S-Y, Richards HB, soranzo N, Ahmadi KR, Lingren C, Stefansson K, Dermitzakis ET, Deloukas P, Spector TD, and Mcarthy MI. “Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes.” Nature Genetics doi 10:1038/ng/833 (2011)
  2. Sears B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  3. Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, and Miller YI. “12/15-lipoxygenase is required for the early onset of high-fat, diet-induced adipose tissue inflammation and insulin resistance in mice.” PLoS One 4: e7250 (2009)
  4. Chakrabarti SK, Cole BK, Wen Y, Keller SR, and Nadler JL. “12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.” Obesity 17: 1657-1663 (2009)
  5. Denys A, Hichami A, and Khan NA. “n-3 PUFAs modulate T-cell activation via protein kinase C-alpha and -epsilon and the NF-kappaB signaling pathway.” J Lipid Res 46: 752-758 (2005)
  6. Zwart SR, Pierson D, Mehta S, Gonda S, and Smith SM. “Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation.” J Bone Miner Res 25: 1049-1057 (2010)
  7. Romier B, Van De Walle J, During A, Larondelle Y, Schneider YJ. “Modulation of signaling nuclear factor-kappaB activation pathway by polyphenols in human intestinal Caco-2 cells.” Br J Nutr 100: 542-551 (2008)
  8. Hotamisligil GS. “Inflammation and metabolic disorders.” Nature 444: 860-867 (2006)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Fish oil and fat loss

I have often said, “It takes fat to burn fat”. As I describe in my book “Toxic Fat,” increased cellular inflammation in the fat cells turns them into “fat traps” (1). This means that fat cells become increasingly compromised in their ability to release stored fat for conversion into chemical energy needed to allow you to move around and survive. As a result, you get fatter, and you are constantly tired and hungry.

One of the best ways to reduce cellular inflammation in the fat cells is by increasing your intake of omega-3 fatty acids. This was demonstrated in a recent article that indicated supplementing a calorie-restricted diet with 1.5 grams of EPA and DHA per day resulted in more than two pounds of additional weight loss compared to the control group in a eight-week period (2).

How omega-3 fatty acids help to ”burn fat faster” is most likely related to their ability to reduce cellular inflammation in the fat cells (3,4) and to increase the levels of adiponectin (5). Both mechanisms will help relax a “fat trap” that has been activated by cellular inflammation.

However, there is a cautionary note. This is because omega-3 fatty acids are very prone to oxidation once they enter the body. This is especially true relative to the enhanced oxidation of the LDL particles (6-9).

This means that to get the full benefits any fish oil supplementation, you have to increase your intake of polyphenols to protect the omega-3 fatty acids from oxidation. How much? I recommend at least 8,000 additional ORAC units for every 2.5 grams of EPA and DHA that you add to your diet. That's about 10 servings per day of fruits and vegetables, which should be no problem if you are following the Zone diet. If not, then consider taking a good polyphenol supplement.

Once you add both extra fish oil and polyphenols to a calorie-restricted diet, you will burn fat faster without any concern about increased oxidation in the body that can lead to accelerated aging.


  1. Sears B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  2. Thorsdottir I, Tomasson H, Gunnarsdottir I, Gisladottir E, Kiely M, Parra MD, Bandarra NM, Schaafsma G, and Martinez JA. “Randomized trial of weight-loss diets for young adults varying in fish and fish oil content.” Int J Obes 31: 1560-1566 (2007)
  3. Huber J, Loffler M, Bilban M, Reimers M, Kadl A, Todoric J, Zeyda M, Geyeregger R, Schreiner M, Weichhart T, Leitinger N, Waldhausl W, and Stulnig TM. “Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids.” Int J Obes 31: 1004-1013 (2007)
  4. Todoric J, Loffler M, Huber J, Bilban M, Reimers M, Kadl A, Zeyda M, Waldhausl W, and Stulnig TM. “Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids.” Diabetologia 49: 2109-2119 (2006)
  5. Krebs JD, Browning LM, McLean NK, Rothwell JL, Mishra GD, Moore CS, and Jebb SA. “Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women.” Int J Obes 30: 1535-1544 (2006)
  6. Pedersen H, Petersen M, Major-Pedersen A, Jensen T, Nielsen NS, Lauridsen ST, and Marckmann P. “Influence of fish oil supplementation on in vivo and in vitro oxidation resistance of low-density lipoprotein in type 2 diabetes.” Eur J Clin Nutr 57: 713-720 (2003)
  7. Turini ME, Crozier GL, Donnet-Hughes A, and Richelle MA. “Short-term fish oil supplementation improved innate immunity, but increased ex vivo oxidation of LDL in man–a pilot study.” Eur J Nutr 40: 56-65 (2001)
  8. Stalenhoef AF, de Graaf J, Wittekoek ME, Bredie SJ, Demacker PN, and Kastelein JJ. “The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low-density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia.” Atherosclerosis 153: 129-138 (2000)
  9. Finnegan YE. Minihane AM, Leigh-Firbank EC, Kew S, Meijer GW, Muggli R, Calder PC, and Williams CM. “Plant- and marine-derived n-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects.” Am J Clin Nutr 77: 783-795 (2003)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

New food trends may be dysfunctional

dysfunctional food trendsAs our obesity epidemic gets worse and the general health of Americans continues to decline, people are always searching for new food trends to make us thinner, happier and smarter.

The leading contenders for the next new thing are functional foods. Frankly, these are simply processed foods with added dietary supplements to make you more likely to purchase them compared to the competition on the same shelf. Of course, this means the functional food can’t be too much more expensive than its competitor (and ideally the same price) without affecting the taste of the product. As an afterthought, it might even have some health benefit for you.

Frankly, there are only two functional foods that have been truly successful over the years. The first is Gatorade. Originally developed to reduce minerals lost during exercise, the original Gatorade tasted terrible. So they simply added some sugar to make it taste better and called it a sports drink. Gatorade is basically a Coke or a Pepsi with minerals, but you feel better about yourself when you guzzle down those carbohydrates. The other commercial success was Tropicana Orange Juice with Calcium. The makers of Tropicana didn’t ask you to pay a premium for this functional food since it was exactly the same price as Tropicana Orange Juice without calcium. That’s why the sales of this functional food dramatically increased. Who doesn’t want something extra (and it might even be healthy) for free?

It’s been a long time since any new functional foods tried to break into the market. The two most recent have been POM and Activia yogurt. POM contains polyphenols from the pomegranate seed. That’s good because polyphenols are excellent anti-oxidants and potentially good anti-inflammatory chemicals. But like the minerals in Gatorade, they taste terrible. So when you purchase a bottle of POM, what you are getting is a mass of added sugar. I guarantee you that the intake of these polyphenols in POM is not worth the extra sugar.

Another “new” source of polyphenols we hear about comes from chocolate, which is now being promoted as the new super-fruit (1). Like all polyphenols, the polyphenols found in chocolate are intensely bitter. That’s why no one likes to eat unsweetened Baker’s Chocolate even though it is polyphenol-rich. But if you add a lot of sugar to it, then it tastes great. In fact, it’s a candy bar. Again like most functional foods, these polyphenol functional foods represent one step forward in that you are consuming more polyphenols, but two steps backwards for consuming too much sugar.

Tasting bad is something that has really prevented yogurt sales from taking off in America. The solution was simple. Add more sweetness, usually in the form of fruit plus extra sugar. Finally, natural yogurt became acceptable. But to turn it into a functional food, Dannon decided to add more probiotics to its already sugar-sweetened yogurt and call it Activia, promoting it to help soothe an angry digestive system. In December 2010 the Federal Trade Commission stepped in and hit Dannon with a $21-million fine for false advertising (2). Not only were the levels of probiotics in Activia too low to be of any health benefit, but Dannon was also making drug-claims on a food to boot. Not surprisingly, the FTC is also after POM for similar misleading claims (3). Darned those regulators. They take all the fun out of marketing functional foods.

The list goes on and on. Whether it is vitamin waters, or micro-encapsulated fish oil, vitamin D, etc., trying to put bad-tasting nutritional supplements that have some proven benefits into foods and charge the consumer a higher price is never going to work. To prevent the poor taste, you have to microencapsulate the supplement to make it sound high-tech, (they call it nanotechnology) and this costs a lot of money. Adding the bad-tasting nutritional supplement without the microencapsulation to a food makes it taste worse (unless you are adding a lot of sugar at the same time, of course eroding all the potential health benefits of the supplement). Finally, the consumer will only buy this new functional food if it is the same price as what they usually purchase.

So what’s the next new thing in functional foods? In my opinion, it is returning to the concept of cooking for yourself in your own kitchen using food ingredients you buy on the periphery of the supermarket, and then taking the nutritional supplements that have proven efficacy (like fish oil and polyphenols) at the therapeutic level to produce real health benefits. Now you have real functional foods that finally work at a lower cost than you would pay for in the supermarket.

Now, that’s a radical new food trend that just might work.


1. Crozier SJ, Preston AG, Hurst JW, Payne MJ, Mann J, Hainly L, and Miller DL. “Cacao seeds are a ‘super fruit’: A comparative analysis of various fruit powders and products.” Chem Central J 5:5 (2011)

2. Horovitz B. “Dannon’s Activia, DanActive health claims draw $21M fine.” USA Today. December 15, 2010

3. Wyatt E. “Regulators Call Health Claims in Pom Juice Ads Deceptive.” New York Times. September 27, 2010

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

What’s the story on chocolate?

chocolate and polyphenolsChocolate is big business, generating about $50 billion in annual worldwide sales. But is it good medicine? Before I get to that answer, let me give you some background on the manufacturing of chocolate.

The first use of chocolate appears to be about 3,000 years ago in Central Mexico to produce an intensely bitter drink called xocolatl. Today, we still get the raw material for chocolate from the seeds of the cocoa tree. However, now they are fermented and roasted prior to extracting the raw cocoa beans from their pods. The raw cocoa mass is then ground and heated to produce what is called chocolate liquor.

This chocolate liquid is exceptionally bitter because it is rich in polyphenols. This is what you get when you buy unsweetened baker’s chocolate. Keep in mind that even with the extreme bitterness of unsweetened baker’s chocolate, the total polyphenol content is only about 5 percent of the total mass (the rest is cocoa butter). This means that purified chocolate polyphenols are about 20 times bitterer than the taste of unsweetened baker’s chocolate.

The chocolate liquor can also be further refined. The most common way is to remove the fat portion (i.e., cocoa butter) from the chocolate liquor by simple pressing. What remains is the cocoa powder that retains all of the polyphenols but in a dry form that can be ground to a powder. The isolated cocoa butter is the base for making white chocolate. Although it is free of any of the beneficial polyphenols, it still retains the excellent mouth feel of the cocoa butter. Add some extra sugar, and it is a great-tasting snack that has absolutely no health benefits.

You can always add more sugar to the cocoa liquor to sweeten the chocolate taste. That’s the ”dark chocolate” that dominates the market today. Of course in the process, you dilute out the polyphenols, which give chocolate all of its health benefits, not to mention increasing calories and increasing insulin levels because of the added sugar. That’s why eating dark chocolate will not help you lose weight. When you add more sugar and milk to the dark chocolate, the bitter taste (and the health benefits) is even reduced further. Now you have a milk chocolate candy bar.

Now what about the health benefits of the chocolate polyphenols before you start diluting them out with added sugar? Here the research data are clear. If you consume enough chocolate polyphenols, you will reduce blood pressure (1). This is probably due to the increase of nitric oxide production and its beneficial effects on relaxing the endothelial cells that line the blood vessels (2). How much is enough? Over a two-week period about 500 mg of polyphenols per day (this is the amount found in a typical 100-gram bar of unsweetened baker’s chocolate) can significantly reduce blood pressure by about 4 mm Hg (3). If you are willing to consume smaller amounts of very dark chocolate (providing 30 mg of polyphenols per day) for a much longer period of time, there is an improvement in endothelial cell relaxation, but without a reduction of blood pressure (4). Therefore, the blood pressure benefits of chocolate consumption appear to be dose-related. There is also evidence of chocolate polyphenols having some anti-inflammatory properties (5).

Considering these benefits, should chocolate be considered a “super fruit”? To answer that question, a recent publication compared the ORAC (Oxygen Radical Absorption Capacity) values of unsweetened cocoa to similar-size servings of other fruit powders from “super fruits,” such as blueberries, pomegranate and acai berries (6). The ORAC value is a measure of the ability of the dried fruit to quench free radicals. The cocoa powder had a significantly higher ORAC value per serving than the other fruit powders. Before you get too excited, keep in mind that the typical cocoa powder in the supermarket has been treated with alkali (i.e. Dutch-treated) to remove much of the bitterness of the polyphenols and in the process remove most of their health benefits (6).

So if you want the health benefits of chocolate, just make it bitter (i.e. unsweetened baker’s chocolate) and eat a lot of it (about 100 grams per day). You won’t lose any weight, but your blood pressure will come down a bit. Now if you want some real anti-inflammatory benefits, eat the chocolate, take 2.5 grams of EPA and DHA and follow an anti-inflammatory diet. Now you have a far more powerful dietary approach for reducing cellular inflammation and its clinical consequences, such as elevated blood pressure.


1. Ried K, Sullivan T, Fakler P, Frank OR, and Stocks NP. “Does chocolate reduce blood pressure? A meta-analysis.” BMC Med 8:39 (2010)

2. Taubert D, Roesen R, Lehmann C, Jung N, and Schomig E. “Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial.” JAMA 298: 49-60 (2007)

3. Grassi D, Lippi C, Necozione S, Desideri G, and Ferri C. “Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons.” Am J Clin Nutr 81: 611-614 (2005)

4. Engler MB, Engler MM, Chen CY, Malloy MJ, Browne A, Chiu EY, Kwak HK, Milbury P, Paul SM,Blumberg J, and Mietus-Snyder ML. “Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults.” J Am Coll Nutr 23: 197-204 (2004)

5. Selmi C, Cocchi CA, Lanfredini M, Keen CL, and Gershwin ME. “Chocolate at heart: The anti-inflammatory impact of cocoa flavanols.” Mol Nutr Food Res 52:1340-8 (2008)

6. Crozier SJ, Preston MG, Hurst JW, Payne JM, Mann J, Hainly L, and Miller DL. “Caco seeds are a super fruit,” Chemistry Central Journal 5:5 (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

How polyphenols make probiotics work better

Probiotics in dietToday we hear a lot about probiotics, especially when popular yogurts are fortified with them. So what are they? The term probiotics is simply a synthesized word for live microorganisms (bacteria or yeast) that may have some health benefits. In the lower part of your gut, you have a virtual zoo of microorganisms. Some are beneficial; others are very harmful. In fact, it is estimated that you have 10 times as many microorganisms in the gut than the entire number of cells that constitute your body. Of the hundreds of different microorganisms in the gut, two usually stand out as probiotic stars: Lactobacillus and bifidobacterium.

It appears that selected strains of these particular microorganisms have anti-inflammatory properties, which inhibit the activity of nuclear factor-κB (NF-κB), the genetic “master switch” that turns on inflammation (1,2). Certain yeasts secrete a soluble factor that also inhibits NF-κB (3), and this may be the same mechanism that those “friendly” bacteria use to reduce inflammation.

But here’s the problem with probiotics — you have to get enough of the live organisms into the gut to provide any benefits. It’s easy to fortify them into some yogurt product that is kept at low temperature, but getting those bacteria to pass through the digestive system and reach the lower part of the large intestine is another story. It is estimated that 99.999 percent of the live probiotics are digested in the process.

So how can you enhance the biological action of those extremely few probiotics that actually make it alive to the lower intestine? The answer is polyphenols. Like probiotics, polyphenols also inhibit NF-κB (4,5). In fact, polyphenols are the primary agents that protect plants from microbial attack.

Unlike probiotics, polyphenols are more robust in their ability to reach the lower intestine. But like probiotics you have to take enough polyphenols to have a therapeutic effect in the gut. You will probably need at least 8,000 ORAC units per day to maintain adequate levels of polyphenols in the gut. That is approximately 10 servings of fruits and vegetables per day. But if you want to significantly reduce the existing inflammatory burden in the gut and the rest of body, you have to consume a lot more polyphenols. Supplementation with highly purified polyphenols becomes your only realistic alternative.

And here is where I think the real benefits of dietary polyphenols may reside. By reducing the inflammatory load in the gut, you can automatically reduce the anti-inflammatory load in the rest of the entire body. So before you take that next serving of probiotic-fortified yogurt, make sure you are taking adequate levels of polyphenols to make sure those probiotics actually deliver their marketing promises.


  1. Hegazy SK and El-Bedewy MM. “Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis.” World J Gastroenterol 16: 4145-4151 (2010)
  2. Bai AP, Ouyang Q, Xiao XR, and Li SF. “Probiotics modulate inflammatory cytokine secretion from inflamed mucosa in active ulcerative colitis.” Int J Clin Pract 60: 284-288 (2006)
  3. Sougioultzis S, Simeonidis S, Bhaskar KR, Chen X, Anton PM, Keates S, Pothoulakis C, and Kelly CP. “Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappaB-mediated IL-8 gene expression. Biochem Biophys Res Commun 343: 69-76 (2006)
  4. Romier B, Van De Walle J, During A, Larondelle Y, and Schneider YJ. “Modulation of signaling nuclear factor-kappaB activation pathway by polyphenols in human intestinal Caco-2 cells.” Br J Nutr 100: 542-551 (2008)
  5. Jung M, Triebel S, Anke T,Richling E, and Erkel G. “Influence of apple polyphenols on inflammatory gene expression.” Mol Nutr Food Res 53: 1263-1280 (2009)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.