Anxiety and Omega-3 Fatty Acids

Anxiety is one of most the common neurological disorders, but it also is one of the most difficult to understand. Simply stated, anxiety is an apprehension of the future, especially about an upcoming challenging task. This is normal. What is not normal is when the reaction is significantly out of proportion to what might be expected. Over the years, a number of specific terms, such as generalized anxiety disorder, panic disorder, phobia, social anxiety disorder, obsessive-compulsive disorder, post-traumatic stress disorder, and separation anxiety disorder have emerged in an attempt to better categorize general anxiety. Any way you describe anxiety, it is a big problem with nearly 20% of Americans suffering from it, thus making anxiety the largest neurological disorder in the United States (1).

If anxiety is worrying about the future, then it has a fellow traveler, depression. Depression can be viewed as an over-reaction about regret associated with past events. Not surprisingly, almost an equal number of Americans suffer from this condition. This leads to the question: Is there a linkage between the two conditions? I believe the answer is yes and it may be caused by radical changes in the American diet in the past 40 years. These changes have resulted in what I term the Perfect Nutritional Storm (2). The result is an increase in the levels of inflammation throughout the body and particularly in the brain.

The brain is incredibly sensitive to inflammation, not the type you can feel but the type of inflammation that is below the perception of pain. I term this cellular inflammation. What makes this type of inflammation so disruptive is that it causes a breakdown in signaling between cells. What causes cellular inflammation is an increase in the omega-6 fatty acid known as arachidonic acid (AA). From this fatty acid comes a wide range of inflammatory hormones known as eicosanoids that are the usual suspects when it comes to inflammation. This is why anti-inflammatory drugs (aspirin, non-steroid anti-inflammatories, COX-2 inhibitions and corticosteroids) all have a single mode of action—to inhibit the formation of these inflammatory eicosanoids. These drugs, however, can’t cross the blood-brain barrier that isolates the brain from a lot of noxious materials in the blood stream. So when the brain becomes inflamed, its only protection is adequate levels of anti-inflammatory omega-3 fatty acids. But what happens when the levels of omega-3 fatty acids are low in the brain? The answer is increased neuro-inflammation and continual disruption of signaling between nerves.

There are two omega-3 fatty acids in the brain. The first is called docosahexaenoic acid or DHA. This is primarily a structural component for the brain. The other is called eicosapentaenoic acid or EPA. This is the primary anti-inflammatory omega-3 fatty acid for the brain. So if the levels of EPA are low in the blood, they are going to be low in the brain. To further complicate the matter, the lifetime of EPA in the brain is very limited (3,4). This means you have to have a constant supply in the blood stream to keep neuro-inflammation under control.

It is known from work with uni-polar and bi-polar depressed patients, that high-dose fish oil rich in EPA has remarkable benefits (5,6). On the other hand, supplementing the diet with oils rich in DHA have virtually no effects (7).

Since anxiety has a significant co-morbidity with depression, the obvious question becomes is it possible that high levels of EPA can reduce anxiety? The answer appears to be yes (8), according to a study conducted in 2008 using substance abusers. It is known that increased anxiety is one of the primary reasons why substance abusers and alcoholics tend to relapse (9,10). When these patients were given a high dose of EPA (greater than 2 grams of EPA per day), there was a statistically significant reduction in anxiety compared to those receiving a placebo. More importantly, the degree of anxiety reduced was highly correlated to the decrease of the ratio of AA to EPA in the blood (8). In other studies with normal individuals without clinical depression or anxiety, increased intake of EPA improved their ability to handle stress and generated significant improvements in mood (11-13). It may be that depression and anxiety are simply two sides of the same coin of increased cellular inflammation in the brain. Even for “normal” individuals, high dose EPA seems to make them happier and better able to handle stress.

So let’s go back to an earlier question and ask about the dietary changes in the American diet that may be factors in the growing prevalence of both depression and anxiety. As I outline in my book Toxic Fat, it is probably due to a growing imbalance of AA and EPA in our diets (2). What causes AA to increase is a combination of increased consumption of vegetable oils rich in omega-6 fatty acids coupled with an increase in the consumption of refined carbohydrates that generate insulin. When excess omega-6 fatty acids interact with increased insulin, you get a surge of AA production. At the same time, our consumption of fish rich in EPA has decreased. The end result is an increasing AA/EPA ratio in the blood, which means a corresponding increase in the same AA/EPA ratio in the brain creating more cellular inflammation.

Cutting back vegetable oil and refined carbohydrate intake is difficult since they are now the most inexpensive source of calories. Not surprisingly, they are key ingredients for virtually every processed food product. So if changing your diet is too hard, then consider eating more fish to get adequate levels of EPA. Of course, the question is how much fish? If we use a daily intake level of 2 grams of EPA per day that was used the successful trials of using omega-3 fatty acids reduce anxiety, then this would translate into consuming 14 pounds of cod per day. If you prefer a more fatty fish like salmon, then you would only need about 2 pounds per day to get 2 grams of EPA. The Japanese are able to reach that level because they are the largest consumers of fish in the world. These are highly unlikely dietary changes for most Americans. However, it has been demonstrated that following a strict anti-inflammatory diet coupled with purified fish oil supplements can generate an AA/EPA ratio similar to that found in the Japanese population (11).

There is simply no easy way out of this problem created by the Perfect Nutritional Storm, which will only intensify with each succeeding generation due to the insidious effect of cellular inflammation on fetal programming in the womb. Unfortunately for most Americans this will require a dietary change of immense proportions. This probably means that Valium and other anti-anxiety medications are here to stay.

References

  1. Kessler RC, Chiu WT, Demler O, Merikangas KR, and Walters EE. “Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication”. Arch Gen Psychiatry 62:617–627 (2005)
  2. Sears B. Toxic Fat. Thomas Nelson. Nashville, TN (2008)
  3. Chen CT, Liu Z, Ouellet M, Calon F, and Bazinet RP. “Rapid beta-oxidation of eicosapentaenoic acid in mouse brain: an in situ study.” Prostaglandins Leukot Essent Fatty Acids 80:157-163 (2009)
  4. Chen CT, Liu Z, and Bazinet RP. “Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study.” J Neurochem 116:363-373 (2011)
  5. Nemets B, Stahl Z, and Belmaker RH. “Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder.” Am J Psychiatry 159:477-479 (2002)
  6. Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E, Cress KK, and Marangell LB. “Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial.” Arch Gen Psychiatry 56:407-412 (1999)
  7. Marangell LB, Martinez JM, Zboyan HA, Kertz B, Kim HF, and Puryear LJ. “A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression.” Am J Psychiatry 160:996-998 (2003)
  8. Buydens-Branchey L, Branchey M, and Hibbeln JR. “Associations between increases in plasma n-3 polyunsaturated fatty acids following supplementation and decreases in anger and anxiety in substance abusers.” Prog Neuropsychopharmacol Biol Psychiatry 32:568-575 (2008)
  9. Willinger U, Lenzinger E, Hornik K, Fischer G, Schonbeck G, Aschauer HN, and Meszaros K. “Anxiety as a predictor of relapse in detoxified alcohol-dependent patients.” Alcohol and Alcoholism 37:609-612 (2002)
  10. Kushner MG, Abrams K, Thuras P, Hanson KL, Brekke M, and Sletten S. “Follow-up study of anxiety disorder and alcohol dependence in comorbid alcoholism treatment patients.” Alcohol Clin Exp Res 29:1432-1443 (2005)
  11. Fontani G, Corradeschi F, Felici A, Alfatti F, Bugarini R, Fiaschi AI, Cerretani D, Montorfano G, Rizzo AM, and Berra B. “Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with Omega-3 polyunsaturated fatty acids.” Eur J Clin Invest 35:499-507 (2005)
  12. Fontani G, Corradeschi F, Felici A, Alfatti F, Migliorini S, and Lodi L. “Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. “Eur J Clin Invest 35:691-699 (2005)
  13. Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, and Glaser R. “Omega-3 supplementation lowers inflammation and anxiety in medical students: A randomized controlled trial.” Brain Behav Immun 25:1725-1734 (2011)

What is Cellular Inflammation?

People (including virtually all physicians) are constantly confused what cellular inflammation is. So I decided to take the opportunity to explain the concept in more detail.

There are two types of inflammation. The first type is classical inflammation, which generates the inflammatory response we associate with pain such as, heat, redness, swelling, pain, and eventually loss of organ function. The other type is cellular inflammation, which is below the perception of pain. Cellular inflammation is the initiating cause of chronic disease because it disrupts hormonal signaling networks throughout the body.

Definition of Cellular Inflammation

The definition of cellular inflammation is increased activity of the gene transcription factor know as Nuclear Factor-kappaB (NF-κB). This is the gene transcription factor found in every cell, and it activates the inflammatory response of the innate immune system. Although the innate immune system is the most primitive part of our immune response, it has been resistant to study without recent breakthroughs in molecular biology. In fact, the 2011 Nobel Prize in Medicine was awarded for the earliest studies on the innate immune system and its implications in the development of chronic disease.

There are several extracellular events through which NF-κB can be activated by distinct mechanisms. These include microbial invasion recognized by toll-like receptors (TLR), generation of reactive oxygen species (ROS), cellular generation of inflammatory eicosanoids, and interaction with inflammatory cytokines via defined cell surface receptors. We also know that several of these initiating events are modulated by dietary factors. This also means that appropriate use of the diet can either turn on or turn off the activation of NF-κB. This new knowledge is the foundation of anti-inflammatory nutrition (1-3).

Understanding Cellular Inflammation

Although the innate immune system is exceptionally complex, it can be illustrated in a relatively simple diagram as shown below in Figure 1.

Figure 1. Simplified View of the Innate Immune System

Essential fatty acids are the most powerful modulators of NF-κB. In particular, the omega-6 fatty acid arachidonic acid (AA) activates NF-κB, whereas the omega-3 fatty acid eicosapentaenoic acid (EPA) does not (4). Recent work suggests that a subgroup of eicosanoids known as leukotrienes that are derived from AA may play a significant factor in NF-κB activation (5,6)

Extracellular inflammatory cytokines can also activate NF-κB by their interaction with specific receptors on the cell surface. The primary cytokine that activates NF-κB is tumor necrosis factor (TNF) (7). Toll-like receptors (TLR) are another starting point for the activation of NF-κB. In particular, TLR-4 is sensitive to dietary saturated fatty acids (8). The binding of saturated fatty acids to TLR-4 can be inhibited by omega-3 fatty acids such as EPA. Finally ROS either induced by ionizing radiation or by excess free radical formation are additional activators of NF-κB (9).

Anti-inflammatory Nutrition To Inhibit Cellular Inflammation

Anti-inflammatory nutrition is based on the ability of certain nutrients to reduce the activation of NF-κB.

The most effective way to lower the activation of NF-κB is to reduce the levels of AA in the target cell membrane thus reducing the formation of leukotrienes that can activate NF-κB. Having the patient follow an anti-inflammatory diet, such as the Zone Diet coupled with the simultaneous lowering omega-6 fatty acid intake are the primary dietary strategies to accomplish this goal (1-3).

Another effective dietary approach (and often easier for the patient to comply with) is the dietary supplementation with adequate levels of high-dose fish oil rich in omega-3 fatty acids, such as EPA and DHA. These omega-3 fatty acids taken at high enough levels will lower AA levels and increase EPA levels. This change of the AA/EPA ratio in the cell membrane will reduce the likelihood of the formation of inflammatory leukotrienes that can activate NF-κB. This is because leukotrienes derived from AA are pro-inflammatory, whereas those from EPA are non-inflammatory. The increased intake of omega-3 fatty acids is also a dietary approach that can activate the anti-inflammatory gene transcription factor PPAR-γ (10-12), decrease the formation of ROS (13) and decrease the binding of saturated fatty acids to TLR-4 (14). This illustrates the multi-functional roles that omega-3 fatty acids have in controlling cellular inflammation.

A third dietary approach is the adequate intake of dietary polyphenols. These are compounds that give fruits and vegetables their color. At high levels they are powerful anti-oxidants to reduce the generation of ROS (15). They can also inhibit the activation of NF-κB (16).

Finally, the least effective dietary strategy (but still useful) is the reduction of dietary saturated fat intake. This is because saturated fatty acids will cause the activation of the TLR-4 receptor in the cell membrane (8,14).

Obviously, the greater the number of these dietary strategies implemented by the patient, the greater the overall effect on reducing cellular inflammation.

Clinical Measurement of Cellular Inflammation

Since cellular inflammation is confined to the cell itself, there are few blood markers that can be used to directly measure the levels of systemic cellular inflammation in a cell. However, the AA/EPA ratio in the blood appears to be a precise and reproducible marker of the levels of the same ratio of these essential fatty acids in the cell membrane.

As described above, the leukotrienes derived from AA are powerful modulators of NF-κB. Thus a reduction in the AA/EPA ratio in the target cell membrane will lead to a reduced activation of NF-κB by decreased formation of inflammatory leukotrienes. The cell membrane is constantly being supplied by AA and EPA from the blood. Therefore the AA/EPA ratio in the blood becomes an excellent marker of the same ratio in the cell membrane (17). Currently the best and most reproducible marker of cellular inflammation is the AA/EPA ratio in the blood as it represents an upstream control point for the control of NF-κB activation.

The most commonly used diagnostic marker of inflammation is C-reactive protein (CRP). Unlike the AA/EPA ratio, CRP is a very distant downstream marker of past NF-κB activation. This is because one of inflammatory mediators expressed in the target cell is IL-6. It must eventually reach a high enough level in the blood to eventually interact with the liver or the fat cells to produce CRP. This makes CRP a more long-lived marker in the blood stream compared to the primary inflammatory gene products (IL-1, IL-6, TNF, and COX-2) released after the activation of NF-κB. As a consequence, CRP is easier to measure than the most immediate inflammatory products generated by NF-κB activation. However, easier doesn’t necessarily translate into better. In fact, an increase AA/EPA ratio in the target cell membrane often precedes any increase of C-reactive protein by several years. An elevated AA/EPA ratio indicates that NF-κB is at the tipping point and the cell is primed for increased genetic expression of a wide variety of inflammatory mediators. The measurement of CRP indicates that NF-κB has been activated for a considerable period of time and that cellular inflammation is now causing systemic damage.

Summary

I believe the future of medicine lies in the control of cellular inflammation. This is most effectively accomplished by the constant application of anti-inflammatory nutrition. The success of such dietary interventions can be measured clinically by the reduction of the AA/EPA ratio in the blood.

References

  1. Sears B. The Anti-Inflammation Zone. Regan Books. New York, NY (2005)
  2. Sears B. Toxic Fat. Thomas Nelson. Nashville, TN (2008)
  3. Sears B and Riccordi C. “Anti-inflammatory nutrition as a pharmacological approach to treat obesity.” J Obesity doi:10.1155/2011/431985 (2011)
  4. Camandola S, Leonarduzzi G,Musso T, Varesio L, Carini R, Scavazza A, Chiarpotto E, Baeuerle PA, and Poli G. “Nuclear factor kB is activated by arachidonic acid but not by eicosapentaenoic acid.” Biochem Biophys Res Commun 229:643-647 (1996)
  5. Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, and Miller YI. “12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice.” PLoS One 4:e7250 (2009)
  6. Chakrabarti SK, Cole BK, Wen Y, Keller SR, and Nadler JL. “12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.” Obesity 17:1657-1663 (2009)
  7. Min JK, Kim YM, Kim SW, Kwon MC, Kong YY, Hwang IK, Won MH, Rho J, and Kwon YG. “TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells.” J Immunol 175: 531-540 (2005)
  8. Kim JJ and Sears DD. “TLR4 and Insulin Resistance.” Gastroenterol Res Pract doi:10./2010/212563 (2010)
  9. Bubici C, Papa S, Dean K, and Franzoso G. “Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance.” Oncogene 25: 6731-6748 (2006)
  10. Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, Moorhead JF, and Varghese Z. “EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: Evidence for a PPAR-gamma-dependent mechanism.” Kidney Int 67: 867-874 (2005)
  11. Kawashima A, Harada T, Imada K, Yano T, and Mizuguchi K. “Eicosapentaenoic acid inhibits interleukin-6 production in interleukin-1beta-stimulated C6 glioma cells through peroxisome proliferator-activated receptor-gamma.” Prostaglandins LeukotEssent Fatty Acids 79: 59-65 (2008)
  12. Chambrier C, Bastard JP, Rieusset J, Chevillotte E, Bonnefont-Rousselot D, Therond P, Hainque B, Riou JP, Laville M, and Vidal H. “Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma.” Obes Res 10: 518-525 (2002)
  13. Mas E, Woodman RJ, Burke V, Puddey IB, Beilin LJ, Durand T, and Mori TA. “The omega-3 fatty acids EPA and DHA decrease plasma F(2)-isoprostanes.” Free Radic Res 44: 983-990 (2010)
  14. Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, and Hwang DH. “Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids.” J Lipid Res 44: 479-486 (2003)
  15. Crispo JA, Ansell DR, Piche M, Eibl JK, Khaper N, Ross GM, and Tai TC. “Protective effects of polyphenolic compounds on oxidative stress-induced cytotoxicity in PC12 cells.” Can J Physiol Pharmacol 88: 429-438 (2010)
  16. Romier B, Van De Walle J, During A, Larondelle Y, and Schneider YJ. “Modulation of signaling nuclear factor-kappaB activation pathway by polyphenols in human intestinal Caco-2 cells.” Br J Nutr 100: 542-551 (2008)
  17. Yee LD, Lester JL, Cole RM, Richardson JR, Hsu JC, Li Y, Lehman A, Belury MA, and Clinton SK. “Omega-3 fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition.” Am J Clin Nutr 91: 1185-1194 (2010)

Meditation: Push-ups for the brain?

Meditation has always been considered a “fringe” area of medicine. Although it has been around for thousands of years, it was never considered “high-tech”.

However, the development of new imaging technologies has finally given researchers the ability to ask some interesting questions about meditation and its effect on brain structure and cognitive performance.

When comparing brain wave patterns using old technologies like an EEG, it has been demonstrated that experienced meditators have higher levels of alpha waves (indicative of a relaxed brain) and lower levels of beta waves (indicative of focusing on intentional tasks or anxiety) during mediation (1). More recent imaging technology like the SPECT scan indicates that experienced meditators have improved cerebral blood flow (2). MRI technology has shown that experienced meditators have a greater density of grey matter in the brain (3), improved neural connections (4), and lower sensitivity to induced pain (5) when compared to matched control groups.

One of the problems with these types of studies has always been subject recruitment. The studies described above are simply various examples of case-control epidemiological studies. This type of study is often done in cancer epidemiology and is used to compare someone with cancer to a control without cancer to see if any differences are apparent (like if smoking is associated with lung cancer). The problem is that experienced meditators may already have different brain structures or improved neural networks and corresponding improved attention spans that attracted them to meditation in the first place. This is like comparing professional athletes to their fans watching them on TV and then looking for differences in fitness between the two groups.

Aware of these shortcomings, more recent, better controlled, shorter-term studies have taken either non-meditators or experienced meditators and put them into an intensive meditation program to be compared to equally matched subjects waiting to enter the same a program. Using a more tightly controlled group of subjects, it has been found that meditation does indeed have benefits in reducing sensitivity to pain (6), improving ability to modulate alpha waves that help reduce distractions (7), increasing brain grey matter (8), and increasing telomerase activity (9). The increased telomerase activity is usually associated with increased lifespan because when telomeres on the DNA become too short, the cell dies.

There are a lot of health benefits that stem from sitting in a comfortable chair thinking of nothing for at least 20 minutes a day. In fact, it is so easy that most people never get around to doing it.

So if you don’t have time to take at least 20 minutes a day to meditate, then consider taking high-dose fish oil. In as little as 35 days, you will see it also generates significant increases in the intensity of alpha waves, increased attention span, and improved mood (10) just like experienced meditators, who have spent years trying to reach the same goals. And if you maintain high levels of omega-3 fatty acids in your blood for a longer period of time, it appears that you get decreased telomere shortening that should help you live longer (11). And if you are worried about time, taking adequate levels of fish oil to get these benefits only takes 15 seconds a day.

Of course, if you were really smart, you would do both every day.

References

  1. Lagopoulos J, Xu J, Rasmussen I, Vik A, Malhi GS, Eliassen CF, Arntsen IE, Saether JG, Hollup S, Holen A, Davanger S, and Ellingsen O. “Increased theta and alpha EEG activity during nondirective meditation.” J Alt Complementary Medicine 15: 1187-1192 (2009)
  2. Newberg A, Alavi A, Baime M, Pourdehnad M, Santanna J, and d’Aquili E. “The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study.” Psychiatry Res 106: 113-122 (2001)
  3. Toga AW, Lepore N., Gaser C. The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter. Neuroimage 45: 672-678 (2009)
  4. Luders E, Clark K, Narr KL, Toga AW. “Enhanced brain connectivity in long-term meditation practitioners [In Process Citation] Neuroimage 57: 1308-1316 (2011)
  5. Grant JA, Courtemanche J, Duerden EG, Duncan GH, and Rainville P. “Cortical thickness and pain sensitivity in zen meditators.” Emotion 10: 43-53 (2010)
  6. Zeidan F, Martucci KT, Kraft RA, Gordon NS, McHaffie JG, and Coghill RC. “Brain mechanisms supporting the modulation of pain by mindfulness meditation.” J Neuroscience 31: 5540-5548 (2011)
  7. Kerr CE, Jones SR, Wan Q, Pritchett DL, Wasserman RH, Wexler A, Villanueva JJ, Shaw JR, Lazar SW, Kaptchuk TJ, Littenberg R, Hamalainen MS, and Moore CI. “Effects of mindfulness meditation training on anticipatory alpha modulation in primary somatosensory cortex.” Brain Research Bulletin 85: 96-103 (2011)
  8. Holzel BK, Carmody J, Vangel M, Congleton C, Yerramsetti SM, Gard T, and Lazar SW. “Mindfulness practice leads to increases in regional brain gray matter density.” Psychiatry Research 191: 36-43 (2011)
  9. Jacobs TL, Epel ES, Lin J, Blackburn EH, Wolkowitz OM, Bridwell DA, Zanesco AP, Aichele SR, Sahdra BK, Maclean KA, King BG, Shaver PR, Rosenberg EL, Ferrer E,; Wallace BA, and Saron CD. “Intensive meditation training, immune cell telomerase activity, and psychological mediators.” Psychoneuroendocrinology 36: 664-681 (2011)
  10. Fontani G, Corradeschi F, Felici A, Alfatti F, Migliorini S, and Lodi L. “Cognitive and physiological effects of omega-3 polyunsaturated fatty acid supplementation in healthy subjects.” Eur J Clin Invest 35: 691-
  11. Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, and Whooley MA. “Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease.” JAMA 303: 250-257 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Eat Less, Get Hungry

Telling an obese person simply to eat less rarely succeeds. Is it because they are weak-willed individuals or is there something more complex going on? New research indicates the latter. A new article in Cell Metabolism showed that during extreme calorie restriction, the levels of fatty acids begin to rapidly rise in the blood as the body begins breaking down stored fat for energy. These newly released fatty acids from the fat cells can then enter into the brain (the hypothalamus to be exact) and cause the self-digestion of cells in the hunger neurons (1). This self-digestion of the cells in the hunger neurons produces a rise in the very powerful hunger hormone (AgRP) from the same bundle of neurons. Not surprisingly, the urge to eat becomes almost overpowering. This begins to explain why very low calorie diets can cause rapid weight loss, but are rarely successful in keeping the weight off.

This is why very low calorie diets that promise quick weight loss invariably cause the rapid release of stored fatty acids that promotes constant hunger. This is clearly not a sustainable way to maintain long-term weight management.

Of course the question might be whether it is all fatty acids or just one that causes the problem of cellular death in the hunger neurons? I believe the answer comes back to the usual suspect, arachidonic acid (2). It has been known for 20 years that when you put obese individuals on a very low calorie diet there is a rapid increase in the levels of arachidonic acid levels in the blood (3). Arachidonic acid can easily cross the blood brain barrier and enter into the hypothalamus. Since arachidonic acid is a powerful promoter of cell death (4), increased concentrations inside the hypothalamus may be the primary accelerator of the death of the hunger neurons. Increased levels of arachidionic acid in the blood are also the underlying cause of insulin resistance because of its effect on the generation of cellular inflammation (2). So as you build up the levels of stored arachidonic acid in the fat cells, caused by the Perfect Nutritional Storm (2), you are almost ensuring constant hunger when you try to lose weight quickly by following very low calorie diets. To make matters even worse, as arachidonic acid levels also build up in the brain increasing the production of endocannabinoids (5). These are the hormones that give you the continual munchies (they are related to the active ingredient in marijuana).

So is there any good news in all of this research? Yes as long as you develop a lifetime dietary strategy for reducing arachidonic acid and the cellular inflammation it causes as well as following a reasonable low calorie diet that supplies adequate levels of fat to moderate the release of stored fatty acids from the fat cells. It means following an anti-inflammatory diet with adequate protein using low-glycemic load carbohydrates and fats very low in omega-6 fatty acids, but adequate in monounsaturated and omega-3 fats.

That’s why you never want to start any type of weight loss program without adding omega-3 fatty acids to counteract the released of stored arachidonic acid from the fat cells. Not only will these omega-3 fatty acids reduce the degradation of the hunger neurons thereby reducing the release of powerful hunger hormones during calorie restriction, but they will also inhibit the release of endocannabinoids in the brain (6). The combination of the two events will ensure weight loss without hunger and that’s sustainable.

References

  1. Kaushik S,Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ, Cuervo AM, and Singh R. “Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance.” Cell Metabolism 14: 173-183 (2011)
  2. Sears B. Toxic Fat. Thomas Nelson. Nashville, TN (2008)
  3. Phinney SD, Davis PG, Johnson SB, and Holman RT. “Obesity and weight loss alter serum polyunsaturated lipids in humans.” Amer J Clin Nutr 53: 831-838 (1991)
  4. Pompeia C, Lima T, and Curi R. “Arachidonic acid cytotoxicity: can arachidonic acid be a physiological mediator of cell death?” Cell Biochemistry and Function 21:97-104 (2003)
  5. Kim J, Li Y, and Watkins BA. “Endocannabinoid signaling and energy metabolism: A target for dietary intervention.” Nutrition 27: 624-632 (2011)
  6. Oda E. “n-3 Fatty acids and the endocannabinoid system.” Am J Clin Nutr 85: 919 (2007)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Preventing obesity through prenatal nutrition

It is obvious that pediatric obesity is a growing problem. However, compared to adult obesity, it is a relatively new problem. In a new article to be published in the Journal of Adolescent Health, it is pointed out that while childhood obesity has increased some 300 percent since 1960, most of that increase only began in the mid 1990s (1). This is well after the beginning of the climb of adult obesity, which started in the 1980s. Why the lag time? I believe it may have been caused by the amplification of any genetic predisposition to obesity by prenatal programming in the womb. That means you had to have obese mothers whose own hormonal changes and diet were altering the fetal programming of their children, thus amplifying their likelihood for obesity after birth.

This possibility makes sense based on results from another recent article that demonstrates that the lower the omega-3 fatty acid status in the mother, the more likely the child would be obese by the age of 3 (2). In this particular study, researchers found that by age 3 about 10 percent of the children were already obese. What they also analyzed was even though virtually all the women were consuming very low levels of omega-3 fatty acids during pregnancy, the higher the levels of the omega-3 fatty acids in mother’s diet, or her blood, and especially in the blood from the umbilical cord to the fetus, the lower the levels of obesity in the child three years later after birth.

Of course, lower levels of omega-3 fatty acids usually indicate higher levels of omega-6 fatty acids, giving rise to an unbalanced ratio of omega-3 to omega-6 fatty acids. This is why the highest correlation with increased childhood obesity was found with an increasing ratio of arachidonic acid to EPA and DHA in the blood of the mother and also in the umbilical cord of the fetus. This makes perfect sense since it is known from animal studies that the higher the omega-6 to omega-3 ratio in the diet of the mother, the greater the obesity in the offspring (3-5).

So if you want to begin to decrease childhood obesity, it is probably best to start in the womb of the mother with appropriate prenatal nutrition using appropriate levels of omega-3 fatty acids. This would prevent the fetal programming of the unborn child that would lead to rapid accumulation of excess body fat after birth. I think this makes a lot more sense than telling obese children to “eat less and exercise more” after their genetic expression has been altered in the womb. And if this makes sense, then doesn’t it also strongly suggest that feeding children more omega-3 and less omega-6 fatty acids after birth will silence the activation of ancient genes that make them fat and keep them fat (6).

References

  1. Lee H, Lee D, Guo G, and Harris KM. “Trends in body mass index in adolescence and young adulthood in the United States: 1959-2002.” J Adolescent Heath DOI:10.1016/jadolheath2011.04.019 (2011)
  2. Donahue SMA, Rifas-Shiman SL, Gold DR, Jouni ZE, Gilman MW, and Oken E. “Prenatal fatty acid status and child adiposity at age 3.” Am J Clin Nutr 93: 780-788 (2011)
  3. Korotkova M, Gabrielsson BG, Holmang, A, Larrson BM, Hanson LA, and Strandvik B. “Gender-related long-term effects in adult rats by perinatal dietary ratio of n-6/n-3 fatty acids.” Am J Physiol Regul Integr Comp Physiol 288: R575-579 (2005)
  4. Ailhaud G, Guesnet P, and Cannane SC. “An emerging risk factor for obesity: does disequilibrium of polyunsaturated fatty acid metabolism contribute to excessive adipose tissue development?” Br J Nutr 100: 461-470 (2008)
  5. Massiera L, Barbry P, Guesnet P, Joly A, Luquet S, Moreihon-Brest C, Moshen-Kanson T, Amri E-Z, and Ailhaud G. “A western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations.” J Lipid Res 51: 2352-2361 (2010)
  6. Massiera Saint-Marc P, Seydoux J, Murata T, Kobayshi T, Narumiya S, Guesnet P, Amri E-Z, Negrel R, and Alhaud G. “Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern?’ J Lipid Res 44: 271-279 (2003)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

How to eliminate 50 percent of all coronary events

The European Society of Cardiology estimates a 50 percent reduction of coronary events if you can stabilize soft, vulnerable plaques (1). We are often led to believe that plaques you can see on an angiogram are “killer” plaques. It’s true that if they are large enough to obstruct blood flow, they will decrease oxygen transfer to the heart muscle cells making them more tired with less effort.

This is the definition of stable angina. It simply means it takes less effort to over-exert the heart muscles before they fatigue. However, you need approximately a 90 percent total obstruction of the blood vessel to develop stable angina. These plaques account for most of the plaques you might find in an angiogram. This is why if you take an angiogram, you are often immediately wheeled into the operating room to have a stent put into the artery with the belief you are only seconds away from an immediate heart attack and death.

However, the same angiogram can’t see a few plaques (because they are so small), known as the soft, vulnerable ones. When soft, vulnerable plaques rupture (like a pimple), then you have the death and disability (i.e., damaged heart tissue) that truly characterize heart disease. Technically, this is called an acute coronary event, and it has very little to do with the stable plaques that can cause angina. It is this small number of “rogue” soft, vulnerable plaques that are the true killers in heart disease (2,3).

The ultimate cause of plaque rupture is cellular inflammation inside the plaque. Cellular inflammation degrades the fibrous external coating of the plaque. Usually inside these soft, vulnerable plaques are also a lot of macrophages engorged with lipids. This is called the “necrotic core”. When the plaque bursts, these lipid pools are released into the bloodstream causing platelet aggregation and the rapid blockage of the artery resulting in a complete restriction of blood flow (as opposed to a limited restriction of blood flow with a typical stable plaque that will never rupture). It is estimated that about 75 percent of all coronary events are caused by ruptures of the soft, vulnerable plaques (2).

As I mentioned above, the really scary part of this story is that there is no type of imaging technology that can detect dangerous soft, vulnerable plaques. In essence, you don’t know if you have them or not. This is why the prediction of impeding cardiovascular events remains a guessing game. Even more interesting is that these soft, vulnerable plaques seem to form rather quickly (in about 10 years) as opposed to growing slowly over a lifetime (4). Moreover, the rate of growth of these soft, vulnerable plaques is strongly correlated with increasing insulin levels in the blood (4).

So what does this mean for people who don’t want to die from a sudden rupture of soft, vulnerable plaques that can’t be detected? The first thing is to reduce the inflammation within the plaque. Surprisingly, there is only one clinical study that has ever been published that addressed this question, and it used fish oil (5). This study indicated that if you give patients relatively high doses of fish oil, you could see a definite remodeling of the soft, vulnerable plaques in about 40 days compared to subjects taking a placebo composed of safflower oil. The plaques in the subjects taking the fish oil became less inflamed, had higher levels of omega-3 fatty acids, fewer macrophages and more well-formed fibrous caps compared to those taking the placebo. So taking a therapeutic level of fish oil for a lifetime seems to be a good way to reduce the rupture of these plaques.

Another way to potentially reduce their formation in the first place is lower insulin levels. The reason insulin levels are elevated is because organs, such as the adipose tissue, the liver and the muscles, are also inflamed (6). The best way to reduce that systemic inflammation is to follow the anti-inflammatory diet and take therapeutic levels of fish oil for a lifetime. Your success is best measured by the AA/EPA ratio in the blood. Call me crazy, but I think that’s what I have been recommending for the past 16 years (7).

References

  1. Yia-Herttulala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Merrmann J, Hoefer IM, Juekma JW, Krams R, Kwak BR, Marx N, Maruszeqica M, Newby A, Pasterkamp G, Serruys PWJC, Waltenberger J, Weber C, and Tokgozoglu L. “Stabilization of atherosclerotic plaques.” Thomobosis and Haemostasis 106: 1-19 (2011)
  2. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, Colombo A, Stefanadis C, Ward Casscells S, Moreno PR, Maseri A, and van der Steen AF. “Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque.” Eur Heart J 25: 1077-1082 (2004)
  3. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O’Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, and Hong Y. “Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.” Circulation 119:480-486 (2009)
  4. Hagg S, Salehpour M, Noori P, Lundstrom J, Possnert G, Takolander R, Konrad P, Rosfors S, Ruusalepp A, Skogsberg J, Tegner J, and Bjorkegren J. “Carotid plaque age is a feature of plaque stability inversely related to levels of plasma insulin.” PLoS One 6: e1824 (2011)
  5. Thies F, Garry JM, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, and Grimble RF. “Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomized controlled trial.” Lancet 2003 361: 477-485 (2003)
  6. Sears, B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  7. Sears B. “The Zone.” Regan Books. New York, NY (1995)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Pass the salt please?

One of the great “truths” in cardiovascular medicine is that to prevent stroke and cardiovascular death you reduce your salt intake. But is it true? A new analysis of the existing literature from the Cochrane Library indicates this may not be the case (1). Analyzing a great number of published studies, researchers came to the conclusion that there is no strong evidence to support the idea that salt restriction reduces cardiovascular disease or all-cause mortality in people with either normal or increased blood pressure. Furthermore, they found that while reducing salt intake did decrease blood pressure, it also increased the risk of all-cause death in people with existing congestive heart failure.

If that wasn’t enough, an article in the May 4 issue of the Journal of the American Heart Association found that low salt increased the risk of death from heart attacks and stokes, while not reducing blood pressure (2). This study was done with middle-aged Europeans and followed them for nearly eight years. During this time, the less salt they consumed, the greater the number who died of heart disease.

Needless to say, the American Heart Association (the same people who recommend eating lots of omega-6 fats) was enraged, similar to the Wizard of Oz telling Dorothy to ignore the man behind the curtain.

So why might restriction of salt consumption cause increased heart attacks? The reason may be due to increased insulin resistance induced by salt restriction (3). Insulin resistance increases insulin levels, and if that is combined with increased consumption of omega-6 fatty acids (remember the American Heart Association), you now have a sure-fire prescription to produce more arachidonic acid. It’s the inflammatory eicosanoids derived from arachidionic acid that would cause inflammation in the arterial wall leading to a heart attack.

This is not to say that some people are not salt-sensitive (African-Americans are particularly so), but I believe the problem is more a matter of balance. You need some sodium, but you also need potassium to balance it. This is confirmed by a recent study from Harvard Medical School that demonstrates that the higher the sodium-to-potassium ratio in the blood, the greater the likelihood of cardiovascular mortality (4). The relationship for increased death was significantly greater for a high sodium-to-potassium level than simply the sodium level itself.

Getting sodium in your diet is easy (sprinkle salt on your food), but getting adequate levels of potassium means eating a lot of fruits and vegetables. So rather than restricting salt intake or taking drugs (i.e. diuretics) to reduce the levels of sodium in the body, think about eating more fruits and vegetables if your goal is to reduce the likelihood of a heart attack. Oh, yes, also ignore the advice of American Heart Association and take more omega-3 and less omega-6 fatty acids.

References

  1. Taylor, RS, Ashton KE, Moxham T, Hooper L and Ebrahim S. “Reduced dietary salt for the prevention of cardiovascular disease.” Cochrane Database of Systematic Reviews DOI: 10.1002/14651858.CD009217 (2011)
  2. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerova J, Richart T, Jin Y, Olszanecka A, Malyutina S, Casiglia E, Filipovsky J, Kawecka-Jaszcz K, Nikitin Y, and Staessen JA. “Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion.” JAMA 305: 1777-1785 (2011)
  3. Alderman MH. “Evidence relating dietary sodium to cardiovascular disease.” J Am Coll Nutr 25: 256S-261S (2006)
  4. Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, Chang M-H, Gwinn M, Dowling N, Khoury MJ, and Hu FB. “Sodium and potassium intake and morality among US adults.” Arch Intern Med 171: 1183-1191 (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Zone diet validation studies

Weight Loss

Any diet that restricts calories will result in equivalent weight loss. However, the same doesn’t hold true as to what the source of that weight loss is. Weight loss from either dehydration (such as ketogenic diets) or cannibalization of muscle and organ mass (such as low-protein diets) has no health benefits. Only when the weight loss source is from stored fat do you gain any health benefits. Here the Zone diet has been shown to be superior to all other diets in burning fat faster (1-4). It has been demonstrated that if a person has a high initial insulin response to a glucose challenge, then the Zone diet is also superior in weight loss (5,6). A recent study from the New England Journal of Medicine indicates that a diet composition similar to the Zone diet is superior to other compositions in preventing the regain of lost weight (7). This is probably caused by the increased satiety induced by the Zone diet compared to other diets (1,8,9).

Reduction of cellular inflammation

There is total agreement in the research literature that the Zone diet is superior in reducing cellular inflammation (10-12). Since cellular inflammation is the driving force for chronic disease, then this should be the ultimate goal of any diet. Call me crazy for thinking otherwise.

Heart disease

It is ironic that the Ornish diet is still considered one of the best diets for heart disease, since the published data indicates that twice as many people had fatal heart attacks on the Ornish diet compared to a control diet (13). This is definitely the case of don’t confuse me with the facts. On the other hand, diets with the same balance of protein, carbohydrate and fat as the Zone diet has have been shown to be superior in reducing cardiovascular risk factors, such as cholesterol and fasting insulin (14,15).

Diabetes

The first publication validating the benefits of the Zone diet in treating diabetes appeared in 1998 (16). Since that time there have been several other studies indicating the superiority of the Zone diet composition for reducing blood glucose levels (17-20). In 2005, the Joslin Diabetes Research Center at Harvard Medical School announced its new dietary guidelines for treating obesity and diabetes. These dietary guidelines were essentially identical to the Zone diet. Studies done at the Joslin Diabetes Research Center following those dietary guidelines confirm the efficacy of the Zone diet to reduce diabetic risk factors (21). If the Zone diet isn’t recommended for individuals with diabetes, then someone should tell Harvard.

Ease of use

The Zone diet simply requires balancing one-third of your plate with low-fat protein with the other two-thirds coming from fruits and vegetables (i.e. colorful carbohydrates). Then you add a dash (that’s a small amount) of heart-healthy monounsaturated fats. The Zone diet is based on a bell-shaped curve balancing low-fat protein and low-glycemic-index carbohydrates, not a particular magic number. If you balance the plate as described above using your hand and your eye, it will approximate 40 percent of the calories as carbohydrates, 30 percent of calories as protein, and 30 percent of the calories as fat. Furthermore, it was found in a recent Stanford University study that the Zone diet provided greater amounts of micronutrients on a calorie-restricted program than any other diet (22).

Eventually all dietary theories have to be analyzed in the crucible of experimentation to determine their validity. So far in the past 13 years since I wrote my first book, my concepts of anti-inflammatory nutrition still seem to be at the cutting edge.

References

  1. Skov AR, Toubro S, Ronn B, Holm L, and Astrup A. “Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity.” Int J Obes Relat Metab Disord 23: 528-536 (1999)
  2. Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, Sather C, and Christou DD. “A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women.” J Nutr 133: 411-417 (2003)
  3. Fontani G, Corradeschi F, Felici A, Alfatti F, Bugarini R, Fiaschi AI, Cerretani D, Montorfano G, Rizzo AM, and Berra B. “Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with omega-3 polyunsaturated fatty acids.” Eur J Clin Invest 35: 499-507 (2005)
  4. Layman DK, Evans EM, Erickson D, Seyler J, Weber J, Bagshaw D, Griel A, Psota T, and Kris-Etherton P. “A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults.” J Nutr 139: 514-521 (2009)
  5. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, and Ludwig DS. “Effects of a low-glycemic-load vs low-fat diet in obese young adults: a randomized trial.” JAMA 297: 2092-2102 (2007)
  6. Pittas AG, Das SK, Hajduk CL, Golden J, Saltzman E, Stark PC, Greenberg AS, and Roberts SB. “A low-glycemic-load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial.” Diabetes Care 28: 2939-2941 (2005)
  7. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S, Holst C, Saris WH, and Astrup A. “Diets with high or low protein content and glycemic index for weight-loss maintenance.” N Engl J Med 363: 2102-2113 (2010)
  8. Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB, Agus MS, Swain JF, Larson CL, and Eckert EA. “Dietary high-glycemic-index foods, overeating, and obesity.” Pediatrics 103: E26 (1999)
  9. Agus MS, Swain JF, Larson CL, Eckert EA, and Ludwig DS. “Dietary composition and physiologic adaptations to energy restriction.” Am J Clin Nutr 71: 901-907 (2000)
  10. Pereira MA, Swain J, Goldfine AB, Rifai N, and Ludwig DS. “Effects of a low-glycemic-load diet on resting energy expenditure and heart disease risk factors during weight loss.” JAMA 292: 2482-2490 (2004)
  11. Pittas AG, Roberts SB, Das SK, Gilhooly CH, Saltzman E, Golden J, Stark PC, and Greenberg AS. “The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss.” Obesity 14: 2200-2209 (2006)
  12. Johnston CS, Tjonn SL, Swan PD, White A, Hutchins H, and Sears B. “Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.” Am J Clin Nutr 83: 1055-1061 (2006)
  13. Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merritt TA, Sparler S, Armstrong WT, Ports TA, Kirkeeide RL, Hogeboom C, and Brand RJ, “Intensive lifestyle changes for reversal of coronary heart disease.” JAMA 280: 2001-2007 (1998)
  14. Wolfe BM and Piche LA. “Replacement of carbohydrate by protein in a conventional-fat diet reduces cholesterol and triglyceride concentrations in healthy normolipidemic subjects.” Clin Invest Med 22: 140-1488 (1999)
  15. Dumesnil JG, Turgeon J, Tremblay A, Poirier P, Gilbert M, Gagnon L, St-Pierre S, Garneau C, Lemieux I, Pascot A, Bergeron J, and Despres JP. “Effect of a low-glycaemic index, low-fat, high-protein diet on the atherogenic metabolic risk profile of abdominally obese men.” Br J Nutr 86:557-568 (2001)
  16. Markovic TP, Campbell LV, Balasubramanian S, Jenkins AB, Fleury AC, Simons LA, and Chisholm DJ. “Beneficial effect on average lipid levels from energy restriction and fat loss in obese individuals with or without type 2 diabetes.” Diabetes Care 21: 695-700 (1998)
  17. Layman DK, Shiue H, Sather C, Erickson DJ, and Baum J. “Increased dietary protein modifies glucose and insulin homeostasis in adult women during weight loss.” J Nutr 133: 405-410 (2003)
  18. Gannon MC, Nuttall FQ, Saeed A, Jordan K, and Hoover H. “An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes.” Am J Clin Nutr 78: 734-741 (2003)
  19. Nuttall FQ, Gannon MC, Saeed A, Jordan K, and Hoover H. “The metabolic response of subjects with type 2 diabetes to a high-protein, weight-maintenance diet.” J Clin Endocrinol Metab 2003 88: 3577-3583 (2003)
  20. Gannon MC and Nuttall FQ. “Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition.” Nutr Metab (Lond) 3: 16 (2006)
  21. Hamdy O and Carver C. “The Why WAIT program: improving clinical outcomes through weight management in type 2 diabetes.” Curr Diab Rep 8: 413-420 (2008)
  22. Gardner CD, Kim S, Bersamin A, Dopler-Nelson M, Otten J, Oelrich B, and Cherin R. “Micronutrient quality of weight-loss diets that focus on macronutrients: results from the A TO Z study.” Am J Clin Nutr 92: 304-312 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Is there an obesity gene?

When I first heard about the discovery of a potential obesity gene on the news, I ignored it. After all, a gene only codes for a single protein, and there are about 25,000 genes of which nearly 1,000 seem to be associated with obesity. Nonetheless, I decided to read the research paper in its pre-publication form (1). Even though it is an incredibly scientifically dense paper, rich in genetic jargon, it finally did it begin to make sense.

The protein for which the gene in question codes is called a transcription factor. Transcription factors are the key players in the process of transferring hormonal signals from the surface of the cell to ultimately generate the gene expression of new proteins. As I explained in my book, “Toxic Fat,” nuclear factor-κB (NF-κB) is the transcription factor that turns on the genetic expression of more proteins that leads to cellular inflammation (2).

The transcription factor in this article, known as KLF14, seems to be related to turning on the metabolic responses that lead to insulin resistance, obesity and metabolic syndrome.

Transcription factors have been around for hundreds of millions of years, and they have been highly conserved by evolution because they work so effectively to fine tune gene expression. This might be expected since they are the key players in turning genes “off” and “on” inside the cell. Since they have been around for a long time, this also means that there are natural compounds (usually nutrients) that are instrumental in controlling their activity. For NF-kB (the master regulatory switch for inflammation), it is known that leukotrienes derived from arachidonic acid activate this transcription factor (3,4), whereas omega-3 fatty acids and polyphenols inhibit its activation (5-7). It is very likely the same nutrients may do the same for the activity of the KLF14 transcription factor. From an evolutionary point of view this makes common sense since in less developed organisms (like the fruit fly), the control of fat, metabolism and immunity are found in a single organ known as fat bodies (8).

As I have pointed out in my books, increased cellular inflammation is the first step toward metabolic dysfunction. This is why any decrease in nutrients like omega-3 and polyphenols or any corresponding increase in nutrients like arachidonic acid may be common nutrient control points that dramatically influence our future health. Obviously, as the balance of these nutrients change, their effects on various transcription factors will amplify their impact on gene expression.

A more ominous implication from this study is that the gene mutations that gave rise to increased insulin resistance came only from the mother. This may be the link to understand how fetal programming transmits epigenetic information from one generation to the next. The combination of fetal programming with radical changes in the human diet may well prove to be a deadly combination for our future health and longevity.

References

  1. Small KS, Hedman AK, Grunberg E, Nica AC, Thorleissson G, Kong A, Thersteindottir U, Shin S-Y, Richards HB, soranzo N, Ahmadi KR, Lingren C, Stefansson K, Dermitzakis ET, Deloukas P, Spector TD, and Mcarthy MI. “Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes.” Nature Genetics doi 10:1038/ng/833 (2011)
  2. Sears B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  3. Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, and Miller YI. “12/15-lipoxygenase is required for the early onset of high-fat, diet-induced adipose tissue inflammation and insulin resistance in mice.” PLoS One 4: e7250 (2009)
  4. Chakrabarti SK, Cole BK, Wen Y, Keller SR, and Nadler JL. “12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.” Obesity 17: 1657-1663 (2009)
  5. Denys A, Hichami A, and Khan NA. “n-3 PUFAs modulate T-cell activation via protein kinase C-alpha and -epsilon and the NF-kappaB signaling pathway.” J Lipid Res 46: 752-758 (2005)
  6. Zwart SR, Pierson D, Mehta S, Gonda S, and Smith SM. “Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation.” J Bone Miner Res 25: 1049-1057 (2010)
  7. Romier B, Van De Walle J, During A, Larondelle Y, Schneider YJ. “Modulation of signaling nuclear factor-kappaB activation pathway by polyphenols in human intestinal Caco-2 cells.” Br J Nutr 100: 542-551 (2008)
  8. Hotamisligil GS. “Inflammation and metabolic disorders.” Nature 444: 860-867 (2006)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

The dangers of over-analyzing too much data in prostate study

In the last week there has been a constant buzz about an online pre-publication of a new research article that suggests that high concentrations of omega-3 fatty acids promote aggressive prostate cancer (1). Well, that really isn’t the case, in spite of the press reports. That’s why you have to carefully read the article before jumping to conclusions.

Prostate cancer, like all cancers, is driven by cellular inflammation. The level of cellular inflammation is defined by the AA/EPA ratio of isolated serum phospholipids. When you analyze the data correctly in that article, you find that there was no difference in the AA/EPA ratio between the low-aggressive, high- aggressive, or control group. In fact, all the groups had the same elevated AA/EPA ratio of 18.8. Since I like to have individuals try to maintain an AA/EPA ratio of less than 3, all of these groups could be considered to be inflamed.

Not surprisingly, when you look at either EPA or AA levels separately in each group, they are identical. It’s only when you look at the DHA levels, do you see a small difference statistically, but it’s meaningless clinically. There was a 2.5 percent increase in the DHA levels in the high-aggressive group compared to the control group. In the paper, authors state their error in measuring DHA is ± 2.4 percent. Call me crazy, but I don’t see the big difference between the reported results and their error measurements. To further cloud the results, the authors also find that the levels of trans-fatty acids are lower in the aggressive prostate cancer patients than the controls. So I guess if you wanted to take their data at face value, DHA makes prostate cancer more aggressive and trans-fatty acids found in junk foods make prostate cancer less aggressive.

I believe this is simply a case of over-interpretation of massive amounts of collected data. If you get enough data points, you can always make some type of correlation, but that’s all it is. At some point you also have to allow common sense to enter the final analysis.

Nonetheless, let’s say their data might be correct. How could excess DHA increase the aggressiveness of any cancer? Well, it might decrease the levels of dihomo gamma linolenic acid (DGLA) as I have explained in many of my books (2-5). DGLA is the building block for a powerful group of anti-inflammatory eicosanoids, and its formation is inhibited by DHA. Depressing DGLA levels would reduce the body’s ability to hold back the inflammation that drives the tumor. Unfortunately, with all the data they accumulated, they forgot to publish the changes in the DGLA levels in the various groups. Oops.

So even if there were not any changes in the AA/EPA ratio between groups, a depression of DGLA levels in the aggressive prostate cancer group would easily explain the clinical observation. Unfortunately, that interpretation requires an extensive background in understanding eicosanoid biochemistry, which is not easily found in academic clinical-research centers.

This is not the first time that the potential benefits of DHA are in question. In the largest cardiovascular intervention study ever done, it was demonstrated that adding high levels of EPA to the diet of Japanese patients with high cholesterol levels (who already with a very low AA/EPA ratio of 1.6), dramatically decreased their likelihood of future cardiovascular events (6). This reduction was only correlated with increases in EPA levels as well as with a decrease in the AA/EPA ratio from an already low 1.6 to an even lower 0.8 (7). The levels of DHA in these patients had no significance for predicting future cardiovascular events.

Likewise other studies using DHA alone to treatment post-partum depression, improve neurological functioning of children or treating Alzheimer’s have also been found to be negative (8,9).

It’s not that DHA is bad, it just doesn’t do much to reduce cellular inflammation. DHA does a lot of other useful things, but reducing cellular inflammation in not one of them.

References

  1. Brasky TM, Till C, White E, Neuhouser ML, Song X, Goodman P, Thompson IM, King EB, Albanes D, and Kristal AR. “Serum phospholipid fatty acids and prostate cancer risk.” Amer J Epidem 173: doi 10:1093/aje/kwr9027 (2011)
  2. Sears, B. “The Zone.” Regan Books. New York, NY (1995)
  3. Sears, B. “The OmegaRx Zone.” Regan Books. New York, NY (2002)
  4. Sears, B. “The Anti-inflammation Zone.” Regan Books. New York, NY (2005)
  5. Sears, B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  6. Matsuzaki M, Yokoyama M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, and Matsuzawa Y. “Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease.” Circ J 73:1283-1290 (2009)
  7. Itakura H, Yokoyama M, Matsuzaki M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, and Matsuzawa Y. “Relationships between Plasma Fatty Acid Composition and Coronary Artery Disease.” J Atheroscler Thromb 18:99-107 (2011)
  8. Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, and Ryan P. “Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial.” JAMA 304; 1675-1683 (2010)
  9. Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, Galvin JE, Emond J, Jack CR, Weiner M, Shinto L, and Aisen PS. “Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial.” JAMA 304: 1903-1911 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.