Pass the salt please?

One of the great “truths” in cardiovascular medicine is that to prevent stroke and cardiovascular death you reduce your salt intake. But is it true? A new analysis of the existing literature from the Cochrane Library indicates this may not be the case (1). Analyzing a great number of published studies, researchers came to the conclusion that there is no strong evidence to support the idea that salt restriction reduces cardiovascular disease or all-cause mortality in people with either normal or increased blood pressure. Furthermore, they found that while reducing salt intake did decrease blood pressure, it also increased the risk of all-cause death in people with existing congestive heart failure.

If that wasn’t enough, an article in the May 4 issue of the Journal of the American Heart Association found that low salt increased the risk of death from heart attacks and stokes, while not reducing blood pressure (2). This study was done with middle-aged Europeans and followed them for nearly eight years. During this time, the less salt they consumed, the greater the number who died of heart disease.

Needless to say, the American Heart Association (the same people who recommend eating lots of omega-6 fats) was enraged, similar to the Wizard of Oz telling Dorothy to ignore the man behind the curtain.

So why might restriction of salt consumption cause increased heart attacks? The reason may be due to increased insulin resistance induced by salt restriction (3). Insulin resistance increases insulin levels, and if that is combined with increased consumption of omega-6 fatty acids (remember the American Heart Association), you now have a sure-fire prescription to produce more arachidonic acid. It’s the inflammatory eicosanoids derived from arachidionic acid that would cause inflammation in the arterial wall leading to a heart attack.

This is not to say that some people are not salt-sensitive (African-Americans are particularly so), but I believe the problem is more a matter of balance. You need some sodium, but you also need potassium to balance it. This is confirmed by a recent study from Harvard Medical School that demonstrates that the higher the sodium-to-potassium ratio in the blood, the greater the likelihood of cardiovascular mortality (4). The relationship for increased death was significantly greater for a high sodium-to-potassium level than simply the sodium level itself.

Getting sodium in your diet is easy (sprinkle salt on your food), but getting adequate levels of potassium means eating a lot of fruits and vegetables. So rather than restricting salt intake or taking drugs (i.e. diuretics) to reduce the levels of sodium in the body, think about eating more fruits and vegetables if your goal is to reduce the likelihood of a heart attack. Oh, yes, also ignore the advice of American Heart Association and take more omega-3 and less omega-6 fatty acids.

References

  1. Taylor, RS, Ashton KE, Moxham T, Hooper L and Ebrahim S. “Reduced dietary salt for the prevention of cardiovascular disease.” Cochrane Database of Systematic Reviews DOI: 10.1002/14651858.CD009217 (2011)
  2. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerova J, Richart T, Jin Y, Olszanecka A, Malyutina S, Casiglia E, Filipovsky J, Kawecka-Jaszcz K, Nikitin Y, and Staessen JA. “Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion.” JAMA 305: 1777-1785 (2011)
  3. Alderman MH. “Evidence relating dietary sodium to cardiovascular disease.” J Am Coll Nutr 25: 256S-261S (2006)
  4. Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, Chang M-H, Gwinn M, Dowling N, Khoury MJ, and Hu FB. “Sodium and potassium intake and morality among US adults.” Arch Intern Med 171: 1183-1191 (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Obesity continues to climb

Last week the Robert Wood Johnson Foundation reported that more than 12 states now have adult obesity rates greater than 30 percent, and that one in three children are either overweight or obese. However, 16 years ago, no state in the United States had an adult obesity rate greater than 20 percent. So in less than a generation, adult obesity has skyrocketed. Yet at the same time, according to the Centers for Disease Control, the percentage of overweight people has remained fairly constant since 1960, while the percentage of obese individuals has increased significantly since 1980. What this suggests is that there is a genetic component that can be activated in those individuals predisposed to gain weight. Once activated, accumulation of excess fat accelerates.

I feel the driving force between this activation of genetic factors is the increasing inflammatory nature of the American diet. We know that it is elevated insulin levels that make us fat and keep us fat. But what really causes insulin to become elevated in the first place? The simple explanation is that it comes from eating excess carbohydrates. However, that is too simplistic an explanation since one-third of adult Americans who are thin are also eating excess carbohydrates.

A more comprehensive answer is it’s insulin resistance that causes elevated insulin levels. Insulin resistance is a consequence of disturbances in the body’s insulin-signaling pathways in the cell caused by cellular inflammation. My most recent book, “Toxic Fat,” goes into great detail on this subject (1). But simply stated, the more cellular inflammation you have in your cells, the greater the likelihood of insulin resistance. And if you are genetically prone to gain weight, increasing insulin resistance will really pack on the extra fat. More insidious is that insulin resistance also creates a “fat trap” through which incoming dietary calories are trapped in your fat cells and can’t be released to provide the necessary energy the body needs. This means you are constantly hungry.

If you are surrounded by cheap processed foods (rich in omega-6 fatty acids and refined carbohydrates), then you are going to quench that hunger with those foods that increase cellular inflammation to even greater levels. The end result is an increasing rise of obesity.

But the fastest growing segment of the overweight and obese population is not adults, but children under the age of 5, with 20 percent now either overweight or obese before entering kindergarten (2). You can’t blame school lunches for this because they are not in school yet. What you can blame is epigenetics (3). This is how the metabolic future of the child can be greatly determined in the womb by the inflammatory nature of the mother’s diet. When these children are born, their altered genetics make them sitting targets for a world full of inflammatory food. Unless you change the foundation of the food supply to become more anti-inflammatory (less omega-6 fatty acids and a lower glycemic load), then the future for these children is incredibly bleak.

References

  1. Sears B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  2. Kim J, Peterson KE, Scanlon KS, Fitzmaurice GM, Must A, Oken E, Rifas-Shiman SL, Rich-Edwards JW, and Gillman MW. “Trends in overweight from 1980 through 2001 among preschool-aged children enrolled in a health maintenance organization. Obesity 14: 1107-1112 (2006)
  3. Lustig RH editor. “Obesity Before Birth.” Springer. New York (2011)


Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Zone diet validation studies

Weight Loss

Any diet that restricts calories will result in equivalent weight loss. However, the same doesn’t hold true as to what the source of that weight loss is. Weight loss from either dehydration (such as ketogenic diets) or cannibalization of muscle and organ mass (such as low-protein diets) has no health benefits. Only when the weight loss source is from stored fat do you gain any health benefits. Here the Zone diet has been shown to be superior to all other diets in burning fat faster (1-4). It has been demonstrated that if a person has a high initial insulin response to a glucose challenge, then the Zone diet is also superior in weight loss (5,6). A recent study from the New England Journal of Medicine indicates that a diet composition similar to the Zone diet is superior to other compositions in preventing the regain of lost weight (7). This is probably caused by the increased satiety induced by the Zone diet compared to other diets (1,8,9).

Reduction of cellular inflammation

There is total agreement in the research literature that the Zone diet is superior in reducing cellular inflammation (10-12). Since cellular inflammation is the driving force for chronic disease, then this should be the ultimate goal of any diet. Call me crazy for thinking otherwise.

Heart disease

It is ironic that the Ornish diet is still considered one of the best diets for heart disease, since the published data indicates that twice as many people had fatal heart attacks on the Ornish diet compared to a control diet (13). This is definitely the case of don’t confuse me with the facts. On the other hand, diets with the same balance of protein, carbohydrate and fat as the Zone diet has have been shown to be superior in reducing cardiovascular risk factors, such as cholesterol and fasting insulin (14,15).

Diabetes

The first publication validating the benefits of the Zone diet in treating diabetes appeared in 1998 (16). Since that time there have been several other studies indicating the superiority of the Zone diet composition for reducing blood glucose levels (17-20). In 2005, the Joslin Diabetes Research Center at Harvard Medical School announced its new dietary guidelines for treating obesity and diabetes. These dietary guidelines were essentially identical to the Zone diet. Studies done at the Joslin Diabetes Research Center following those dietary guidelines confirm the efficacy of the Zone diet to reduce diabetic risk factors (21). If the Zone diet isn’t recommended for individuals with diabetes, then someone should tell Harvard.

Ease of use

The Zone diet simply requires balancing one-third of your plate with low-fat protein with the other two-thirds coming from fruits and vegetables (i.e. colorful carbohydrates). Then you add a dash (that’s a small amount) of heart-healthy monounsaturated fats. The Zone diet is based on a bell-shaped curve balancing low-fat protein and low-glycemic-index carbohydrates, not a particular magic number. If you balance the plate as described above using your hand and your eye, it will approximate 40 percent of the calories as carbohydrates, 30 percent of calories as protein, and 30 percent of the calories as fat. Furthermore, it was found in a recent Stanford University study that the Zone diet provided greater amounts of micronutrients on a calorie-restricted program than any other diet (22).

Eventually all dietary theories have to be analyzed in the crucible of experimentation to determine their validity. So far in the past 13 years since I wrote my first book, my concepts of anti-inflammatory nutrition still seem to be at the cutting edge.

References

  1. Skov AR, Toubro S, Ronn B, Holm L, and Astrup A. “Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity.” Int J Obes Relat Metab Disord 23: 528-536 (1999)
  2. Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, Sather C, and Christou DD. “A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women.” J Nutr 133: 411-417 (2003)
  3. Fontani G, Corradeschi F, Felici A, Alfatti F, Bugarini R, Fiaschi AI, Cerretani D, Montorfano G, Rizzo AM, and Berra B. “Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with omega-3 polyunsaturated fatty acids.” Eur J Clin Invest 35: 499-507 (2005)
  4. Layman DK, Evans EM, Erickson D, Seyler J, Weber J, Bagshaw D, Griel A, Psota T, and Kris-Etherton P. “A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults.” J Nutr 139: 514-521 (2009)
  5. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, and Ludwig DS. “Effects of a low-glycemic-load vs low-fat diet in obese young adults: a randomized trial.” JAMA 297: 2092-2102 (2007)
  6. Pittas AG, Das SK, Hajduk CL, Golden J, Saltzman E, Stark PC, Greenberg AS, and Roberts SB. “A low-glycemic-load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial.” Diabetes Care 28: 2939-2941 (2005)
  7. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S, Holst C, Saris WH, and Astrup A. “Diets with high or low protein content and glycemic index for weight-loss maintenance.” N Engl J Med 363: 2102-2113 (2010)
  8. Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB, Agus MS, Swain JF, Larson CL, and Eckert EA. “Dietary high-glycemic-index foods, overeating, and obesity.” Pediatrics 103: E26 (1999)
  9. Agus MS, Swain JF, Larson CL, Eckert EA, and Ludwig DS. “Dietary composition and physiologic adaptations to energy restriction.” Am J Clin Nutr 71: 901-907 (2000)
  10. Pereira MA, Swain J, Goldfine AB, Rifai N, and Ludwig DS. “Effects of a low-glycemic-load diet on resting energy expenditure and heart disease risk factors during weight loss.” JAMA 292: 2482-2490 (2004)
  11. Pittas AG, Roberts SB, Das SK, Gilhooly CH, Saltzman E, Golden J, Stark PC, and Greenberg AS. “The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss.” Obesity 14: 2200-2209 (2006)
  12. Johnston CS, Tjonn SL, Swan PD, White A, Hutchins H, and Sears B. “Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.” Am J Clin Nutr 83: 1055-1061 (2006)
  13. Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merritt TA, Sparler S, Armstrong WT, Ports TA, Kirkeeide RL, Hogeboom C, and Brand RJ, “Intensive lifestyle changes for reversal of coronary heart disease.” JAMA 280: 2001-2007 (1998)
  14. Wolfe BM and Piche LA. “Replacement of carbohydrate by protein in a conventional-fat diet reduces cholesterol and triglyceride concentrations in healthy normolipidemic subjects.” Clin Invest Med 22: 140-1488 (1999)
  15. Dumesnil JG, Turgeon J, Tremblay A, Poirier P, Gilbert M, Gagnon L, St-Pierre S, Garneau C, Lemieux I, Pascot A, Bergeron J, and Despres JP. “Effect of a low-glycaemic index, low-fat, high-protein diet on the atherogenic metabolic risk profile of abdominally obese men.” Br J Nutr 86:557-568 (2001)
  16. Markovic TP, Campbell LV, Balasubramanian S, Jenkins AB, Fleury AC, Simons LA, and Chisholm DJ. “Beneficial effect on average lipid levels from energy restriction and fat loss in obese individuals with or without type 2 diabetes.” Diabetes Care 21: 695-700 (1998)
  17. Layman DK, Shiue H, Sather C, Erickson DJ, and Baum J. “Increased dietary protein modifies glucose and insulin homeostasis in adult women during weight loss.” J Nutr 133: 405-410 (2003)
  18. Gannon MC, Nuttall FQ, Saeed A, Jordan K, and Hoover H. “An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes.” Am J Clin Nutr 78: 734-741 (2003)
  19. Nuttall FQ, Gannon MC, Saeed A, Jordan K, and Hoover H. “The metabolic response of subjects with type 2 diabetes to a high-protein, weight-maintenance diet.” J Clin Endocrinol Metab 2003 88: 3577-3583 (2003)
  20. Gannon MC and Nuttall FQ. “Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition.” Nutr Metab (Lond) 3: 16 (2006)
  21. Hamdy O and Carver C. “The Why WAIT program: improving clinical outcomes through weight management in type 2 diabetes.” Curr Diab Rep 8: 413-420 (2008)
  22. Gardner CD, Kim S, Bersamin A, Dopler-Nelson M, Otten J, Oelrich B, and Cherin R. “Micronutrient quality of weight-loss diets that focus on macronutrients: results from the A TO Z study.” Am J Clin Nutr 92: 304-312 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Getting closer to the Zone all the time

Last week the USDA announced its newest version of how Americans should eat. For the first time in more than 20 years, the USDA apparently stopped acting as the marketing arm of agribusiness by using a food pyramid (presented in 1992) and worse yet some abstract concept of an “eat-more, exercise-more” idea (presented in 2005). Now the USDA has turned to a plate format, which I have used for years. For comparison, you can see that the Zone diet recommendations are still a lot easier to understand than even the new and improved USDA recommendations as shown below:

The USDA proposes that half your plate (I’ll assume at every meal that you want to control the glycemic load of the meal) should be composed of vegetables and fruits. This is much closer to my Zone recommendation of filling 2/3 of the plate at each meal with vegetables and fruits. Both plates give a volume size to protein (and I’ll assume it is a low-fat protein source). The Zone plate appears to have a higher amount of low-fat protein consisting of 1/3 the plate instead of a quarter as found in the USDA plate. Of course if you add in the strange circle outside the plate that represents milk or cheese (both protein sources) back onto the plate, then you would probably get to about 1/3 the plate volume as low-fat protein.

Finally, what about whole grains on the USDA plate? From a glycemic-load viewpoint, whole grains have nearly the same impact on insulin response as refined grains, so you really don’t gain anything hormonally from having them in your diet. However, if you are at your ideal percentage of body fat, have no chronic disease, perform at peak levels, and are always happy and even-keeled emotionally, only then should you think about adding some whole grains to your diet. (Keep in mind that real whole grains are usually only found in storage bins or in the frozen product section of the supermarket, not in the processed food aisles.) But if you begin to gain weight, develop indications of a chronic disease, or don’t perform physically, mentally, and emotionally on a consistent basis, then take the whole grains out of your diet and go back to my classic Zone plate.

The one thing not mentioned in the USDA guidelines is the role of fat. On the Zone plate, I always say add a dash (that’s a small amount), but that dash of fat should be very low in omega-6 and saturated fats as both can accelerate cellular inflammation. I guess the USDA hasn’t had time to grapple with that more complex dietary concept. Perhaps they will another five years from now. But you don’t have to wait for their next guideline revision. Just follow the dietary guidelines on the Zone plate the best you can at every meal and snack. If you do, then you have done everything possible to maintain your wellness (as measured by your ability to manage cellular inflammation) for as long as possible. I guarantee you that will be the only real health-care reform program that you can count on in the future.

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

No excuses, eat your breakfast

Everyone knows that breakfast should be the most important meal of the day. Unfortunately, no one seems to have time to consume a real breakfast. If they do, then it’s usually a high-carbohydrate quasi-dessert that is so portable that they can eat it in the car. Although our world is becoming time-compressed, our biological rhythms are not. While you sleep, your body is literally digesting itself to provide energy for the brain. Much of this energy comes from digesting muscle mass to make glucose as the supplies of stored carbohydrate in the liver are rapidly depleted during the night forcing the body to start digesting muscle to supply enough glucose to the brain. Rebuilding lost muscle mass demands protein replenishment upon waking, and you aren’t going to get achieve that goal by eating a typical breakfast cereal and definitely not by drinking a cup of coffee as a stimulant.

It has been known for some time there is a strong relationship between skipping breakfast and obesity and subsequent establishment of poor dietary habits (1,2). Furthermore, the higher the protein content of the breakfast, the greater the satiety. That increase in satiety is correlated with increased PYY (the satiety hormone) levels in the blood (3). It was also demonstrated more than 10 years ago that giving a higher-protein breakfast meal to overweight adolescents resulted in significant appetite suppression. This lack of hunger is correlated with dramatic changes in the levels of insulin and glucagon in the blood (4).

Now a new study pre-published electronically indicates that a high-protein breakfast also dramatically alters brain function (5). Overweight adolescents who normally skipped breakfast were either given nothing for breakfast, a carbohydrate-rich breakfast, or a protein-rich breakfast for six days. On the seventh day of each breakfast cycle, they had a fMRI scan of their brains while being shown pictures of various palatable foods on a screen. After consuming the higher-protein breakfast for six days, there was far less activation in the regions of brain associated with food motivation and reward when shown the pictures of highly desirable foods.

One surprising observation from this study is the primary reason given by the overweight adolescent subjects for skipping breakfast was not that they were trying to lose weight, but they just lacked the time or were not feeling hungry upon waking. The lack of time in the morning is understandable because adolescents don’t get enough sleep anyway. However, the lack of hunger is probably due to the rise of hormonal levels early in the morning to rouse someone out of sleep. This acts like a powerful stimulant (and if you need more, then drink coffee). But the lack of breakfast means eating more snacks with higher calories throughout the day. Bottom line, even if you aren’t hungry at breakfast, just eat it anyway. But make sure it has adequate levels of protein if you want to lose weight.

References

  1. Deshmukh-Taskar PR, Nicklas TA, O’Neil CE, Keast DR, Radcliffe JD, and Cho S.
    “The relationship of breakfast skipping and type of breakfast consumption with nutrient intake and weight status in children and adolescents: the National Health and Nutrition Examination Survey 1999-2006.” J Am Diet Assoc 110: 869-878 (2010)
  2. Sjoberg A, Hallberg L, Hoglund D, and Hulthen L. “Meal pattern, food choice, nutrient intake and lifestyle factors in The Goteborg Adolescence Study.” Eur J Clin Nutr 57: 1569-1578 (2003)
  3. Leidy HJ and Racki EM. “The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents.” Int J Obes 34: 1125-1133 (2010)
  4. Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, and Roberts SB.
    “High glycemic-index foods, overeating, and obesity.” Pediatrics 103: E26 (1999)
  5. Leidy HJ, Lepping RJ, Savage CR, and Harris CT. “Neural responses to visual food stimuli after a normal vs. higher-protein breakfast in breakfast-skipping teens.” Obesity doi 10.1038./oby.2011.108 (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

The demise of the Mediterranean diet?

This week is Mediterranean diet week. Unfortunately after 2,000 years, no one really knows what the Mediterranean diet actually consists of. Is it the Italian, Spanish, Moroccan, Egyptian, Greek or Lebanese Mediterranean diet? Each diet is very different from each other. What is clear is that people in the Mediterranean region are becoming fatter and less healthy (1).

Part of the reason for the demise of the benefits of a “Mediterranean diet” is the time it takes to prepare a quality meal. It takes time to purchase fresh vegetables. It takes even more time to prepare them. In a world without globalization, you have a lot more time. Now you are competing with every human on the face of the globe for a job, and the result is time-compression. The first casualty of this time-compression effect of globalization is the inability to cook and consume good food containing high-quality food ingredients. Another sinister aspect of globalization is the reduction in the number of food ingredients being used by the general population. In particular, those food ingredients are the least expensive, have an extended shelf life and can be made into very inexpensive, convenient, and portable (not requiring a knife or fork to eat) processed foods. The only food ingredients that meet those requirements are cheap refined grains and cheap refined vegetable oils. And the low-cost producer of these food ingredients is not China, but the United States.

Fruits and vegetables are really expensive unless you grow them yourself. With urbanization of the Mediterranean region, most people now rely on processed foods and restaurants for their meals. Not surprisingly, is the consumption of cheap, refined grains and vegetable oils, which in the past were alien components to the Mediterranean diet (regardless of the location). Now they have replaced vegetables, fruits and olive oil (the primary food ingredients of a Mediterranean diet) because they are cheaper. For example, vegetables and fruits are now 400 times more expensive for the same number of calories as cheap, refined grains imported from America. Corn oil from America is now five times cheaper than olive oil produced in the Mediterranean region.

The people in the Mediterranean regions are eating the same foods that have produced the Perfect Nutritional Storm in America. This explains why 75 percent of Greeks are now overweight or obese and more than half the populations of Italy, Spain and Portugal are now overweight or obese. They are making the right economic choices (cheap food), but the wrong health choices (an increasingly inflammatory diet).

Even if you were to go back to the original Mediterranean diet (circa Roman times), it is apparently still not the best diet for health. This was demonstrated in a recent publication that compared the Mediterranean diet (50 percent calories as carbohydrates, 20 percent calories as protein, and 30 percent of calories as fat) to a diet that contained 40 percent carbohydrates, 30 percent protein, and 30 percent fat in a cross-over study. The higher protein, lower carbohydrate diet was more satiating and had better clinical results, especially in hormonal responses, than a real Mediterranean diet (2). Besides having a different macronutrient ratio, the other diet was extremely limited in grains and dairy products compared to the Mediterranean diet.

So if you want to follow a diet that is the evolution of the Mediterranean diet, then make it a diet that is higher in low-fat protein, lower in carbohydrates (but rich in vegetables and fruits) and low in omega-6 fats. Sure sounds like the Zone diet, but call me crazy (3).

References

  1. Ciezaldlo A. “Does the Mediterranean diet even exist?” New York Times April 1, 2011
  2. Jonsson T, Granfeldt Y, Erlanson-Albertsson C, Ahren B, and Lindeberg S. “A paleolithic diet is more satiating per calorie than a Mediterranean-like diet in individuals with ischemic heart disease.” Nutr Metab 7:85 (2010)
  3. Sears B. “The Zone.” Regan Books. New York, NY (1995)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

The dangers of over-analyzing too much data in prostate study

In the last week there has been a constant buzz about an online pre-publication of a new research article that suggests that high concentrations of omega-3 fatty acids promote aggressive prostate cancer (1). Well, that really isn’t the case, in spite of the press reports. That’s why you have to carefully read the article before jumping to conclusions.

Prostate cancer, like all cancers, is driven by cellular inflammation. The level of cellular inflammation is defined by the AA/EPA ratio of isolated serum phospholipids. When you analyze the data correctly in that article, you find that there was no difference in the AA/EPA ratio between the low-aggressive, high- aggressive, or control group. In fact, all the groups had the same elevated AA/EPA ratio of 18.8. Since I like to have individuals try to maintain an AA/EPA ratio of less than 3, all of these groups could be considered to be inflamed.

Not surprisingly, when you look at either EPA or AA levels separately in each group, they are identical. It’s only when you look at the DHA levels, do you see a small difference statistically, but it’s meaningless clinically. There was a 2.5 percent increase in the DHA levels in the high-aggressive group compared to the control group. In the paper, authors state their error in measuring DHA is ± 2.4 percent. Call me crazy, but I don’t see the big difference between the reported results and their error measurements. To further cloud the results, the authors also find that the levels of trans-fatty acids are lower in the aggressive prostate cancer patients than the controls. So I guess if you wanted to take their data at face value, DHA makes prostate cancer more aggressive and trans-fatty acids found in junk foods make prostate cancer less aggressive.

I believe this is simply a case of over-interpretation of massive amounts of collected data. If you get enough data points, you can always make some type of correlation, but that’s all it is. At some point you also have to allow common sense to enter the final analysis.

Nonetheless, let’s say their data might be correct. How could excess DHA increase the aggressiveness of any cancer? Well, it might decrease the levels of dihomo gamma linolenic acid (DGLA) as I have explained in many of my books (2-5). DGLA is the building block for a powerful group of anti-inflammatory eicosanoids, and its formation is inhibited by DHA. Depressing DGLA levels would reduce the body’s ability to hold back the inflammation that drives the tumor. Unfortunately, with all the data they accumulated, they forgot to publish the changes in the DGLA levels in the various groups. Oops.

So even if there were not any changes in the AA/EPA ratio between groups, a depression of DGLA levels in the aggressive prostate cancer group would easily explain the clinical observation. Unfortunately, that interpretation requires an extensive background in understanding eicosanoid biochemistry, which is not easily found in academic clinical-research centers.

This is not the first time that the potential benefits of DHA are in question. In the largest cardiovascular intervention study ever done, it was demonstrated that adding high levels of EPA to the diet of Japanese patients with high cholesterol levels (who already with a very low AA/EPA ratio of 1.6), dramatically decreased their likelihood of future cardiovascular events (6). This reduction was only correlated with increases in EPA levels as well as with a decrease in the AA/EPA ratio from an already low 1.6 to an even lower 0.8 (7). The levels of DHA in these patients had no significance for predicting future cardiovascular events.

Likewise other studies using DHA alone to treatment post-partum depression, improve neurological functioning of children or treating Alzheimer’s have also been found to be negative (8,9).

It’s not that DHA is bad, it just doesn’t do much to reduce cellular inflammation. DHA does a lot of other useful things, but reducing cellular inflammation in not one of them.

References

  1. Brasky TM, Till C, White E, Neuhouser ML, Song X, Goodman P, Thompson IM, King EB, Albanes D, and Kristal AR. “Serum phospholipid fatty acids and prostate cancer risk.” Amer J Epidem 173: doi 10:1093/aje/kwr9027 (2011)
  2. Sears, B. “The Zone.” Regan Books. New York, NY (1995)
  3. Sears, B. “The OmegaRx Zone.” Regan Books. New York, NY (2002)
  4. Sears, B. “The Anti-inflammation Zone.” Regan Books. New York, NY (2005)
  5. Sears, B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  6. Matsuzaki M, Yokoyama M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, and Matsuzawa Y. “Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease.” Circ J 73:1283-1290 (2009)
  7. Itakura H, Yokoyama M, Matsuzaki M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, and Matsuzawa Y. “Relationships between Plasma Fatty Acid Composition and Coronary Artery Disease.” J Atheroscler Thromb 18:99-107 (2011)
  8. Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, and Ryan P. “Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial.” JAMA 304; 1675-1683 (2010)
  9. Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, Galvin JE, Emond J, Jack CR, Weiner M, Shinto L, and Aisen PS. “Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial.” JAMA 304: 1903-1911 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Obesity starts in the womb

A new study from Harvard Medical School strongly suggests that childhood obesity begins in the mother’s womb (1). Specifically, the lower the EPA and DHA concentrations in either the mother’s diet or her umbilical cord attached to the fetus, the more likely the child will develop obesity by age 3.

It is well known from animal experiments that omega-6 fatty acids make the offspring fat, and omega-3 fatty acids make the offspring thin (2-4). This new study now confirms the same thing is happening in humans (1).

It has been demonstrated in animal models that it only takes three to four generations of a high omega-6 fatty acid intake to increase obesity in the offspring (5,6). I believe one of the driving forces for the increase in childhood obesity has been the dramatic increase in omega-6 fatty acids over the past 100 years (7). However, much of that omega-6 fatty acid increase has come from the massive increase in soybean oil consumption that started in the early 1970s. That 40-year period only represents about two generations of humans, which means it is quite likely there will be higher childhood obesity rates coming with the next generations as long as omega-6 fatty acid consumption stays elevated.

At the molecular level, the problem really starts when these excess omega-6 fatty acids are activated by ever-increasing insulin levels caused by refined carbohydrate consumption to create increased cellular inflammation. In my book “Toxic Fat“ I describe some of the political decisions and their metabolic consequences that have led to the epidemic increase of cellular inflammation that has resulted in the rapid deterioration of American health (8).

The bottom line is that this dramatic increase in omega-6 fatty acids in the diet of American mothers is causing trans-generation changes in our children due to fetal programming. This occurs in the womb and results in the final tuning of the genetic code of the fetus by changing the gene expression of the unborn child. This is called epigenetic programming and begins to explain why each succeeding generation of Americans is getting fatter and fatter (9).

Even more ominous warnings are animal studies that indicate the “reward” response (increased dopamine levels) induced by consuming junk food experienced by the mother can also be transferred to the next generation by fetal programming (10).

So what can you do about this growing genetic disaster? If you are contemplating having a child, then beginning to cut back on omega-6 fatty acids and eating more omega-3 fatty acids is a good starting point. The benefits include having a thinner and smarter child. If you already have children whose gene expression has already been altered by fetal programming, then you have to control their diet for a lifetime to prevent reverting to that altered gene expression. It’s not a pretty picture. Although you can’t escape the dietary consequences of fetal programming, you can minimize the damage by treating food as drug to manage increased cellular inflammation that is making us fatter, sicker and dumber.

References

  1. Donahue, SMA, Rifas-Shiman SL, Gold DR, Jouni ZE, Gillman MW, and Oken E. “Prenatal fatty acid status and child adiposity at age 3y.” Amer J Clin Nutr 93: 780-788 (2011)
  2. Gaillard D, Negrel R, Lagarde M and Ailhaud G. “Requirement and role of arachidonic acid in the differentiation of pre-adipose cells.” Biochem J 257: 389-397 (1989)
  3. Kim HK, Della-Fera M, Lin J, and Baile CA. “Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 pre-adipocytes.” J Nutr 136: 2965-2969 (2006)
  4. Massiera F, Saint-Marc P, Seydoux J, Murata T, Kobayashi T, Narumiya S, Guesnet P, Amri EZ, Negrel R, and Ailhaud G. “Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern?” J Lipid Res 44: 271-279 (2003)
  5. Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, and Rawlings RR. “Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century.” Am J Clin Nutr 93: 950-962 (2011)
  6. Hanbauer I, Rivero-Covelo I, Maloku E, Baca A, Hu Q, Hibbeln JR, and Davis JM. “The Decrease of n-3 Fatty Acid Energy Percentage in an Equicaloric Diet Fed to B6C3Fe Mice for Three Generations Elicits Obesity.” Cardiovasc Psychiatry Neurol: 2009, Article ID.867041 (2009)
  7. Massiera F, Barbry P, Guesnet P, Joly A, Luquet S, Moreilhon-Brest C, Mohsen-Kanson T, Amri EZ, and Ailhaud G. “A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations.” J Lipid Res 51: 2352-2361 (2010)
  8. Sears B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  9. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies J, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, and Hanson MA. “Epigenetic gene promoter methylation at birth is associated with child’s later adiposity.” Diabetes 60: 1528-1534 (2011)
  10. Ong ZY and Muhlhausler BS. “Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring.” FASEB J 25: S1530-6860 (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Fetal programming: Gene transformation gone wild (Part II)

In part 1 of this blog, I discussed how dietary changes can alter gene expression and how those epigenetic changes can be mediated from one generation to the next by fetal programming. This is very clear from animal studies. One of the most frightening studies was published a few years ago (1). In this study, genetically identical mice were split into two colonies. For the next three generations they were fed exactly the same number of calories with exactly the same balance of protein, carbohydrate, and fat. The only difference was that one group had a diet rich in omega-6 fatty acids and low in omega-3 fatty acids, and the other had a better balance of omega-3 to omega-6 fatty acids. After three generations the mice fed the high omega-6 fatty acid diet were grossly obese.

In addition, the mice with high omega-6 fatty acids had fatty livers and enlarged hearts and kidneys, all indicative of major metabolic disturbances.

This also happens with the brain. It has been demonstrated that removing omega-3 fatty acids and replacing them with omega-6 fatty acids over three generations makes animals a lot dumber, probably due to significant reductions in neurotransmitters, like serotonin and dopamine (2-5). Not only are they dumber, but their offspring also show a strong preference for junk food. (6)

How could this happen in such a short period of time? The answer is fetal programming induced by increased cellular inflammation. If this cellular inflammation is maintained by an inflammatory diet, there will be a constant driving force to maintain these epigenetic effects from one generation to other.

The next question is how long does this epigenetic programming have to be continued until it becomes a permanent part of the gene structure. One indication might be found in the development of lactose intolerance in those populations who have been exposed to dairy products for thousands of years. Seventy percent of the world’s population can’t digest these dietary products because they have lost the ability to maintain the necessary enzyme production after weaning from mother’s breast milk. Those who have been constantly exposed to dairy products after weaning have developed an epigenetic programming that seems to be permanent.

These epigenetic changes in humans may take place in only one generation. This is the suggestion of a new article to be published in Diabetes that indicates more than 25 percent of the explanation for childhood obesity could be predicted by prenatal epigenetic changes at birth (7).

As long as our epidemic of cellular inflammation continues to be fueled by the Perfect Nutrition Storm, we can expect our children to continue to become fatter, sicker, and dumber (8).

References

  1. Hanbauer I, Rivero-Covelo I, Maloku E, Baca A, Hu Q, Hibbeln JR, and Davis JM. “The Decrease of n-3 Fatty Acid Energy Percentage in an Equicaloric Diet Fed to B6C3Fe Mice for Three Generations Elicits Obesity.” Cardiovasc Psychiatry Neurol: 2009, Article ID.867041 (2009)
  2. Chalon S, Delion-Vancassel S, Belzung C,,Guilloteau D, Leguisquet AM, Besnard JC, and Durand G. “Dietary fish oil affects monoaminergic neurotransmission and behavior in rats.” J Nutr 128: 2512-2519 (1998)
  3. Zimmer L, Delpal S, Guilloteau D, Aioun J, Durand G, and Chalon S. “Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex.” Neurosci Lett 284: 25-28 (2000)
  4. Moriguchi T, Greiner RS, and Salem N. “Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration.” J Neurochem 75: 2563-2573 (2000)
  5. Chalon S. “Omega-3 fatty acids and monoamine neurotransmission.” Prostaglandins Leukot Essent Fatty Acids 75: 259-269 (2006)
  6. Ong ZY and Muhlhausler BS. “Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring.” FASEB J 25: S1530-6860 (2011)
  7. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies J, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, and Hanson MA. “Epigenetic gene promoter methylation at birth is associated with child’s later adiposity.” Diabetes 60: doi: 10.2337/db10-0979 (2011)
  8. Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, and Hanson MA. “Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease.” Pediatr Res 61: 5R-10R (2007)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.