The Real Facts about Metabolically Healthy Obesity

One of great paradoxes of our obesity epidemic is that many obese individuals appear to be quite healthy. This makes the true believers in the Holy Grail of BMI as the standard for good health quite livid. They know in their hearts that obesity is a mortal sin. Early this year the Centers for Disease Control (CDC) published another in a long series of articles demonstrating that being overweight significantly decreases your likelihood of dying compared to being “normal weight” (1). Immediately Harvard Medical School went on a rampage crying foul. So you can imagine the delight of the weight-loss experts when a new meta-analysis demonstrated that “there is no healthy pattern of increased weight” (2). Take that, you silly scientists at the CDC. Unfortunately, this article represents another case of a meta-analysis creating meta-confusion.

When you state that someone is metabolically healthy obese, it means just that—they are healthy. So how can you look at someone and say they are healthy? You have to look for accepted signs of health, not whether or not they fit into designer clothing. Fortunately, there is a health ranking of obese individuals that is not based on their actual weight. It is called the Edmonton Obesity Staging System (EOSS). Obviously to be included in this ranking system, an individual has to be obese (BMI > 30). But now they are ranked in terms of health as shown below:

Stage 0: Normal blood pressure, blood glucose, and blood lipid levels and no physical or psychological impairment to being obese.

Stage 1: Existence of subclinical risk, such as borderline hypertension, impaired fasting glucose, elevated liver enzymes, mild physical symptoms, and mild impairment of well-being.

Stage 2: Established chronic disease (hypertension, type 2 diabetes, sleep apnea, osteoarthritis, etc.) and moderate limitations in physical and psychological well-being.

Stage 3: Established end-organ damage (heart attack, stroke, heart failure, etc.) and significant physical and psychological impairment.

Stage 4: Essentially the walking dead.

My definition of a healthy obese individual is someone who has an EOSS Stage 0 ranking.

So using these EOSS definitions and the NHANES III data from 1988-1994, how many people with excess weight are actually healthy using the standard definitions of excess weight: Overweight being a BMI of 25-30, Grade 1 Obesity having a BMI between 30-35, Grade 2 Obesity having a BMI between 35-40, and Grade 3 Obesity having a BMI > 40?

Overweight Obese 1 Obese 2 Obese 3
U.S. Population 50M 23M 10M 6M
Stage 0 15% 8% 5% 5%
Stage 1 28% 19% 17% 10%
Stage 2 47% 59% 64% 67%
Stage 3 10% 14% 14% 14%

The total number of overweight and obese Americans falling within the four rankings of EOSS accounted for nearly 90 million Americans. You can also see that there is great heterogeneity within each category of excess weight, but between 5 to 8% of obese patients are quite healthy regardless of their weight.

If you have an EOSS Stage 0 ranking regardless of your weight, you are healthy. Obviously, the more things wrong with you health-wise regardless of your weight, the more likely you are to going to have even more health problems in the future.

And here is the problem with the article that generated so much glee at Harvard Medical School—the researchers didn’t distinguish between truly healthy obese (EOSS Stage 0) and not-so-healthy obese (EOSS Stage 1). In fact, 9 of the 12 studies they included for their meta-analysis defined being “healthy” as not having metabolic syndrome (2). To have metabolic syndrome requires having three very different unhealthy factors. The other 3 studies included defined “healthy” as having two or less risk factors for metabolic syndrome. This means someone with hypertension, elevated blood glucose, or elevated triglycerides would be considered “healthy” in this meta-analysis (2). I guess I come from the old school, in that I wouldn’t consider such people healthy.

Now if you go back to the earlier study published by the CDC, these researchers used a very simple clinical end point that can’t be fudged (1). This end point is called death. Their data clearly points out that overweight people had a significantly a lower death rate than normal-weight people. That’s a hard fact. And the Grade 1 Obese individuals have about the same death rate as normal-weight individuals. If the CDC had used the EOSS system instead of relying on BMI, then it is likely that every grade of obese person with an EOSS Stage 0 would be living longer than normal-weight individuals.

Another recent study has indicated that metabolically healthy obesity (again using mixed patient populations) may be a transitory stage (4). However that study also used a combination of EOSS Stage 0 and Stage 1 patients within their definition of “metabolically healthy obese”. When you separate the truly healthy obese (EOSS Stage 0) from the not-so-healthy (EOSS Stage 1), you find that EOSS Stage 0 patients (regardless of their levels of obesity) maintain their health over a long time period (more than 16 years) as shown below (3).


The EOSS Stage 1 individuals in all weight classes become progressively less healthy with time. So if you combine the truly healthy obese (EOSS Stage 0) with not so healthy obese (EOSS Stage 1), then you might come to the wrong conclusion that the concept of metabolically healthy obesity doesn’t exist (2,4).

So what’s the real linkage between weight and mortality? It depends on your levels of cellular inflammation as I explained in my book Toxic Fat, published in 2008. And the less cellular inflammation you have at any weight, the healthier you are. The best measure of your levels of cellular inflammation is the AA/EPA ratio. It should be between 1.5 and 3. The average AA/EPA ratio for Americans is about 19 (5). As you reduce cellular inflammation, the severities of all forms of chronic disease are reduced regardless of your weight.


  1. Flegal KM, Kit BK, Orpana H, and Graubard BI. “Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis.” JAMA 309:71-82 (2013)
  2. Kramer CK, Zinman B, and Renakeran R. “Are metabolically healthy overweight and obesity benign conditions?” Annals of Internal Medicine 159: 758-769 (2013)
  3. Padwal RS, Pajewshi NM, Allison DB, and Sarma AM. “Using the Edmonton obesity staging system to predict mortality in a population-representative cohort of people with overweight and obesity.” Can Med Assoc Journal 183:E1059-E1065 (2011)
  4. Appleton SL, Seaborn CJ, Visvanathan R, Hill CL, Gill TK, Taylor AW, and Adams RJ. “Diabetes and cardiovascular disease outcome in the metabolically healthy obese phenotype.” Diabetes Care 36:2388-294 (2013)
  5. Harris WS, Pottala JV, Varvel SA, Borowski JJ, Ward JN, and McConnell JP. “Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: observations from 160,000 patients.” Prostaglandins Leukot Essent Fatty Acids 88:257-263 (2013)

More Cholesterol Madness

This week the American Heart Association announced a doubling down on its bet on cholesterol and heart disease.  It certainly wasn’t because there was a sudden epidemic of heart disease, because death rates have been falling since 1970 (20 years before statins were introduced).  Nor has there been any new clinical data showing the benefits of lowering cholesterol levels. Although for the last 20 years the use of statins has been said to be the end of the scourge of heart disease, it still remains the number-one killer of Americans.

Furthermore, these newest guidelines essentially recommend that not only should more Americans be put on statins, but they should also start at the highest dose possible.  In actuality, this “dose” is where the toxic effects begin to appear.  What are the toxic effects?  They include muscle weakness, reduction in cardiovascular fitness, increased diabetes, and memory loss.  Whatever happened to the Hippocratic oath of doing the patient no harm?

    All of this might be justified if there were any indication that cholesterol is the driving force behind heart disease.  Unfortunately, the facts simply don’t support the hype.  Remember, before statins arrived in 1994, saturated fat was the villain in heart disease, not cholesterol (1).  Yet in 2010, Harvard Medical School published epidemiological studies that made the connection between saturated fat and heart disease very tenuous at best (2).

So what if cholesterol is not the cause of heart disease?

Actually, there is another drug that also reduces mortality from heart disease, yet doesn’t lower cholesterol.  It’s called an aspirin.  What aspirin does do is to reduce inflammation.

The inflammation versus cholesterol battle for what causes heart disease has been raging for decades.  What gave the cholesterol boys the upper hand was it is easy to measure blood cholesterol.  With the advent of statins, it was simple for doctors to repeat the drug company mantra to their patients, “If your cholesterol levels are high, you are going to die”.  Great marketing, but poor science.

Just to illustrate the importance of reducing inflammation versus LDL cholesterol on mortality from heart disease, we can look at the heart disease mortality rates in 2004 both Japan and the United States (3).  The Japanese had a death rate from heart disease that was 71% lower than Americans, although their LDL cholesterol levels were virtually the same.  What was different between the two populations were their levels of inflammation as measured by the AA/EPA ratio.  The Japanese levels of inflammation were 76% lower than Americans.  These changes are shown in the following figure.

Figure 1.  Per Cent Differences Between Japanese and Americans


Even without advanced statistics, I think you can see there is a much better correlation between the reduction of the AA/EPA ratio between the Japanese and Americans relative to the reduction in mortality from heart disease than there is between differences in LDL cholesterol levels in Japanese and Americans relative to mortality from heart disease.

    The only way to explain this new madness for lowering cholesterol is it is a last-gasp effort of the cardiologists, who have spent their entire careers on the cholesterol bandwagon and will defend their faith to the death.  Unfortunately, it may be their patients who will have to pay the ultimate price for not being told the real enemy is inflammation.



1.  American Heart Association.  “Dietary guidelines for healthy American adults.  A statement for physicians and health professionals by the Nutrition Committee, American Heart Association.”  Circulation 77: 721-724A (1988)

2.  Siri-Tarino PW, Sun Q, Hu FB, and Krauss RM.  “Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease.”  Am J Clin Nutr 91:535-546 (2010)

3.  Sekikawa A, Steingrimosdotir L, Ueshima H, Shin C, Curb JD, Evans RW, Hauksottir AM, Kadota A, Choo J, Masaki K, Thorsson B, Launer LJ, Farcia ME, Maegawa H, Willco BJ, Eirksdottir G, Fujyoshi A, Miura K, Harris TB, Kuller LH, and Gudnason V.  “Serum levels of marine-derived n-3 fatty acids in Icelanders, Japanes, Korean, and Americans.”  Prostaglandins Leukotrienes and Essential Fatty Acid 87:11-16 (2007)

YWikipedia: Y (named wye plural wyes) is the twenty-fifth letter in the ISO basic Latin alphabet (next to last letter) and represents either a vowel or a consonant in English.

Anti-aging made easy

Anti-aging diets have been around since the 15th century, starting with the books written by Luigi Cornaro. Although I addressed the history of Luigi in my book The Anti-Aging Zone written more than a decade ago, it bears repeating. Finding himself near death at age 35, Luigi Cornaro went on a strict calorie-restricted diet consisting primarily of an egg yolk, some vegetable soup, small amounts of locally grown fruits and vegetables, a very small amount of coarse, unrefined bread and about three glasses of red wine per day. He wrote his first anti-aging book (The Sure and Certain Method of Attaining a Long and Healthful Life) at age 83 and his third book at age 95. He finally died at age 99. At the end of his life he was still mentally sharp and physically active.

Isn’t that what anti-aging is supposed to be? Living a long and full life. But do you have to embark on such a restrictive diet? Can’t you just take a pill or alter a gene? In the Aug. 29th issue of Cell Reports, there is an article that suggests it might be possible to alter such a gene (1). The gene in question mTOR expresses two proteins mTORC1 and mTORC2. mTOR is shorthand for “mammalian target of rapamycin”. Rapamycin is an antibiotic isolated from the soil of Easter Island and is also a powerful immune suppressor. It has been demonstrated that the earlier you give rapamycin to mice, the more you slow their aging process (2,3). In this study researchers genetically reduced the activity of mTOR gene by 75% so it was like giving rapamycin at birth. As might be expected, there was an even greater increase in overall lifespan of the mice corresponding to adding another 16 years of life to humans. These genetically altered mice also appeared to maintain their cognitive skills to a greater extent than the controls, but on the down side they also had less muscle mass and bone density. More ominously, the genetically altered mice also appeared to be more susceptible to infections in old age, suggesting that their immune systems were compromised.

OK so you get some tradeoffs by inhibiting mTOR gene expression: A longer life with greater frailty and decreased immune function as you age. Obviously, you don’t want anyone tinkering with your genes because no one knows the outcome. However, you can tweak gene expression using diet.

One way to reduce mTOR activity is to simply reduce the levels of the amino acid leucine in your diet. This is because leucine stimulates mTOR. If you stimulate mTOR, then you build bigger and stronger muscles. That’s why body builders use a lot isolated dairy protein powders that are rich in leucine as well as eat a lot of egg whites (an even richer source of leucine). On the other hand, vegans don’t eat dairy or eggs and therefore get very little dietary leucine, and their lack of muscles show it. Unfortunately, one of the biggest problems with aging is lack of muscle mass and a less than optimal immune system. So just turning down mTOR activity is probably not sufficient for healthy aging. On the other hand, calorie restriction (like that of Luigi Cornaro) stimulates another gene known as SIRT1 that causes the increased expression of the “enzyme of life” (AMP kinase) that controls metabolism and slows the aging process. You can also stimulate SIRT1 by consuming lots of polyphenols. Can’t you just fine-tune both mTOR and AMP kinase and maximize your quality of life as you age?

Of course you can by having a dietary program consisting of consuming small (but not excessive) amounts of leucine in the blood throughout the day. You can do this by eating no more high-quality protein than you can fit on the palm of your hand. This is about 3 ounces for women and 4 ounces for men. This will activate the mTOR that is necessary to build and maintain muscle and bone. By consuming large amounts of non-starchy vegetables, you are consuming polyphenols that stimulate AMP kinase. By doing both, you are constantly balancing mTOR and AMP kinase but without the rigid calorie restriction undertaken by Luigi Cornaro nearly 500 years ago. You are still restricting calories, but now in the range of 1,200 to 1,500 calories per day compared to the estimated 600 calories per day that Luigi was consuming.

Just to cover your bets since you would be consuming more leucine than Luigi did, you need to counter balance that with more polyphenols most likely by supplementation. Consuming one to two glasses of red wine per day is one way to get extra polyphenols. A better way is to use purified extracts rich in polyphenols, but without the alcohol. Finally for good measure, you want to take at least 2.5 grams of EPA and DHA as that level has been shown to increase the levels of telomeres that further decrease the rate of aging (4).

But isn’t that the Zone Diet? Of course it is, and that’s why I wrote The Anti-Aging Zone more than a decade ago. It was true then, and it is still true today.


  1. Wu JJ, Chen EB, Wang JJ, Cao L, Narayan N, Fergusson MM, Rovira II, Allen M, Springer DA, Lago CU, Zhang S, DuBois W, Ward T, deCabo R, Garilova O, Mock B, and Finkel T. “Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression.” Cell Reports 4:1-8 (2013)
  2. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA,Fernandez E, and Miller RA. “Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.” Nature 460: 395-395 (2009)
  3. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R; Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, and Strong R. “Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice.” J Gerontol A Biol Sci Med Sci 66:191-201 (2011)
  4. Kiecolt-Glaser JK. Epel ES. Belury MA. Andridge R, Lin J, Glaser R, Malarkey WB, Hwang BS, and Blackburn E. “Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial.” Brain Behav Immun 28:16-24 (2013)

Harvard explains why people regain weight with the Atkins diet

A study from Harvard Medical School explains that even though people can lose weight on a ketogenic diet, all lost weight usually rapidly returns.

Ketogenic diets have been recommended for decades for rapid weight loss. The most famous is the Atkins diet. Ketogenic diets are based on high-protein and very low-carbohydrate intake. For the past 40 years such diets have been routinely used in America for weight loss, yet America remains in the midst of a growing epidemic of obesity. While ketogenic diets can induce initial weight loss, all lost weight usually rapidly returns, resulting in more weight (and even more fat) than when the person started the ketogenic diet.

For many years it was thought that such weight regain was due to poor dietary compliance. Now Harvard Medical School in an article in the June 27, 2012, issue of the Journal of the American Medical Association shows the reason for weight regain is more ominous than simple dietary non-compliance. In carefully controlled studies Harvard researchers demonstrated that on a ketogenic diet the levels of the hormone cortisol increase by 18%, and the levels of active thyroid hormone (T3) control metabolism decrease by 12% (1).

The effect of increased cortisol is to cause rapid fat accumulation, as any patient who has ever used prescription cortisol-like drugs knows. It also causes depression of the immune system, loss of memory, and thinning of the skin. These are also hallmarks of the acceleration of the aging process. Furthermore, the lowering of the active form of the thyroid hormone slows down the metabolism, making even seemingly small increases in calorie intake result in increased body fat accumulation. Besides setting you up to regain all the lost weight, the Atkins diet apparently also increases the rate of aging.

However, many people seem willing to continue to try such ketogenic diets in hopes of losing weight quickly. Yet highly controlled studies I published in the world’s most prestigious nutrition journal in world more than six years ago demonstrated that is simply not a true statement (2). In this study either a ketogenic diet (the Atkins diet) or a non-ketogenic diet (the Zone Diet) were compared in obese individuals. For the first six weeks all meals for both groups were prepared in a metabolic kitchen at Arizona State University (in essence treating subjects like lab rats). Both diets contained an equal number of calories.

When it came to weight loss, the subjects following the Zone Diet actually lost slightly more weight than as those on the ketogenic diet during the initial six-week period as shown in Figure 1.

Figure 1. Weight Loss (Zone Diet in open circles, Atkins diet in black squares)

Relative to fat loss on the non-ketogenic Zone Diet, their loss of body fat was again superior to the Atkins diet as shown in Figure 2. Fat loss is far more important than weight loss since all the health benefits from weight loss come from the loss of excess body fat; not from the loss of retained water or loss of muscle mass.

Figure 2. Fat Loss (Zone Diet in open circles, Atkins diet in black squares)

When the subjects continued on the respective diets for another four weeks (but now preparing meals on their own), those subjects on the non-ketogenic Zone Diet continued to lose even more weight and body fat, whereas those on the ketogenic Atkins diet did not. They had reached a plateau. The new research from Harvard Medical explains why.

One of the major problems in following a calorie-restricted diet is lack of energy. In this same study, the subjects on the Zone Diet demonstrated improved daily energy compared to those on the Atkins diet. In another publication using the same subjects, we also demonstrated that those subjects following the Zone Diet had greater performance in endurance testing compared to those following the ketogenic Atkins diet (3).

Figure 3. Energy levels (Zone Diet in open circles, Atkins diet in black squares)

For the past 40 years, ketogenic diets (like the Atkins diet) have failed to treat obesity in America. That is why one relies upon science, not hype, to determine which is the best diet to lose weight (and really body fat), keep it off, and increase energy. Continuing research from Harvard Medical School since 1999 demonstrates that the Zone Diet is the best dietary program to accomplish both goals (1,4-7). And the one thing Harvard will always tell you is that they are never wrong.


  1. Ebbeling CB, Swain JF, Feldman HA, Wong WA, Hachey DL, Garcia-Logo E, and Ludwig DD. “Effects of dietary composition on energy expenditure during weight loss maintenance.” JAMA 307: 267-2634 (2012)
  2. Johnston, C.S., Tjonn, S., Swan, P.D., White A., Hutchins H., and Sears B. “Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.” Am J Clin Nutr 83: 1055-1061 (2006)
  3. White AM, Johnston CS, Swan PD, Tjonn SL, and Sears B. “Blood ketones are directly related to fatigue and perceived effort during exercise in overweight adults adhering to low-carbohydrate diets for weight loss: A pilot study.” J Am Diet Assoc 107: 1792-1796 (2007)
  4. Ludwig, DS, Majzoub AJ, Al-Zahrani A, Dallal GE, Blanco I, and Roberts SB. “High glycemic index foods, overeating, and obesity.” Pediatrics 103: e26 (1999)
  5. Agus MSD, Swain JF, Larson CL, Eckert EA, and Ludwig DS. “Dietary composition and physiologic adaptations to energy restriction.” Am J Clin Nutr 71:901–907 (2000)
  6. Pereira MA, Swain J, Goldfine AB, Rifai N, and Ludwig DS. “Effect of low-glycemic diet on resting energy expenditure and heart disease risk factors during weight loss.” JAMA. 292: 2482-2490 (2004)
  7. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, and Ludwig DS. “Effects of a low–glycemic load vs. low-fat diet in obese young adults”. JAMA 297: 2092-2102 (2007)

What are the real differences between EPA and DHA?

The first casualty of marketing is usually the truth. The reality is that the two key omega-3 fatty acids (EPA and DHA) do a lot of different things, and as a result the benefits of EPA and DHA are often very different. That’s why you need them both. But as to why, let me go into more detail.

Benefits of EPA

The ultimate goal of using omega-3 fatty acids is the reduction of cellular inflammation. Since eicosanoids derived from arachidonic acid (AA), an omega-6 fatty acid, are the primary mediators of cellular inflammation, EPA is the most important of the omega-3 fatty acids to reduce cellular inflammation for a number of reasons. First, EPA is an inhibitor of the enzyme delta-5-desaturase (D5D) that produces AA (1). The more EPA you have in the diet, the less AA you produce. This essentially chokes off the supply of AA necessary for the production of pro-inflammatory eicosanoids (prostaglandins, thromboxanes, leukotrienes, etc.)

DHA is not an inhibitor of this enzyme because it can’t fit into the active catalytic site of the enzyme due to its larger spatial size. As an additional insurance policy, EPA also competes with AA for the enzyme phospholipase A2 necessary to release AA from the membrane phospholipids (where it is stored). Inhibition of this enzyme is the mechanism of action used by corticosteroids. If you have adequate levels of EPA to compete with AA (i.e. a low AA/EPA ratio), you can realize many of the benefits of corticosteroids but without their side effects. That’s because if you don’t release AA from the cell membrane, you can’t make inflammatory eicosanoids. Because of its increased spatial dimensions, DHA is not a good competitor of phospholipase A2 relative to EPA. On the other hand, EPA and AA are very similar spatially so they are in constant competition for the phospholipase A2 enzyme, just as both fatty acids are in constant competition for the delta-5 desaturase enzyme. This is why measuring the AA/EPA ratio is such a powerful predictor of the state of cellular inflammation in your body.

The various enzymes (COX and LOX) that make inflammatory eicosanoids can accommodate both AA and EPA, but again due to the greater spatial size of DHA, these enzymes will have difficulty-converting DHA into eicosanoids. This makes DHA a poor substrate for these key inflammatory enzymes. Thus DHA again has little effect on cellular inflammation, whereas EPA can have a powerful impact.

Finally, it is often assumed since there are not high levels of EPA in the brain, that it is not important for neurological function. Actually, it is key for reducing neuro-inflammation by competing against AA for access to the same enzymes needed to produce inflammatory eicosanoids. However, once EPA enters into the brain, it is rapidly oxidized (2,3). This is not the case with DHA (4). The only way to control cellular inflammation in the brain is to maintain high levels of EPA in the blood. This is why all the work on depression, ADHD, brain trauma, etc., has demonstrated that EPA is superior to DHA (5).

Benefits of DHA

At this point, you might think that DHA is useless. Just the opposite, because DHA can do a lot of different things than EPA and some of them even better.

First is in the area of omega-6 fatty acid metabolism. Whereas EPA is the inhibitor of the enzyme (D5D) that directly produces AA, DHA is an inhibitor of another key enzyme, delta-6-desaturase (D6D), that produces the first metabolite from linoleic acid known as gamma linolenic acid or GLA (6). However, this is not exactly an advantage. Even though reduction of GLA will eventually decrease AA production, it also has the more immediate effect of reducing the production of the next metabolite known as dihomo gamma linolenic acid or DGLA. This can be a disaster as a great number of powerful anti-inflammatory eicosanoids are derived from DGLA. This is why if you use high-dose DHA, it is essential to add back trace amounts of GLA to maintain sufficient levels of DGLA to continue to make anti-inflammatory eicosanoids.

In my opinion, the key benefit of DHA lies in its unique spatial characteristics. As mentioned earlier, the extra double bonds and length of DHA compared to EPA means it takes up a lot more space in the membrane. Although this increase in spatial volume makes DHA a poor substrate for phospholipase A2 as well as the COX and LOX enzymes, it does a great job of making membranes (especially those in the brain) a lot more fluid as the DHA sweeps out a much greater volume in the membrane than EPA. This increase in membrane fluidity is critical for synaptic vesicles and the retina of the eye because it allows receptors to rotate more effectively, thus increasing the transmission of signals from the surface of the membrane to the interior of the nerve cells. This is why DHA is a critical component of these parts of the nerves (7). On the other hand, the myelin membrane is essentially an insulator so that relatively little DHA is found in that part of the membrane.

This constant sweeping motion of DHA also causes the breakup of lipid rafts in membranes (8). Disruption of these islands of relatively solid lipids makes it more difficult for cancer cells to continue to survive and more difficult for inflammatory cytokines to initiate the signaling responses to turn on inflammatory genes (9). In addition, these greater spatial characteristics of DHA increase the size of LDL particles to a greater extent compared to EPA. As a result DHA helps reduce the entry of these enlarged LDL particles into the muscle cells that line the artery, thus reducing the likelihood of developing atherosclerotic lesions (10). Thus the increased spatial territory swept out by DHA is good news for making certain areas of membranes more fluid or lipoprotein particles larger, even though it reduces the benefits of DHA in competing with AA for key enzymes important in the development of cellular inflammation.

Common Effects for Both EPA and DHA

Not surprisingly, there are some areas in which both EPA and DHA appear to be equally beneficial. For example, both are equally effective in reducing triglyceride levels (10). This is probably due to the relatively equivalent activation of the gene transcription factor (PPAR alpha) that causes the enhanced synthesis of the enzymes that oxidize fats in lipoprotein particles. There is also apparently equal activation of the anti-inflammatory gene transcription factor PPAR-gamma (11). Both seem to be equally effective in making powerful anti-inflammatory eicosanoids known as resolvins (12). Finally, although both have no effect on total cholesterol levels, DHA can increase the size of LDL particle to a greater extent than EPA can (10).


EPA and DHA do different things, so you need them both. If your goal is reducing cellular inflammation, then you probably need more EPA than DHA. How much more? Probably twice the levels, but you always cover your bets with omega-3 fatty acids by using both at the same time.


  1. Sears B. “The Zone.” Regan Books. New York, NY (1995)
  2. Chen CT, Liu Z, Ouellet M, Calon F, and Bazinet RP. “Rapid beta-oxidation of eicosapentaenoic acid in mouse brain: an in situ study.” Prostaglandins Leukot Essent Fatty Acids 80:157-163 (2009)
  3. Chen CT, Liu Z, and Bazinet RP. “Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study. J Neurochem 116:363-373 (2011)
  4. Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, Hussein N, Bhattacharjee AK, Ma K, Esposito G, Majchrzak S, Herscovitch P, Eckelman WC, Kurdziel KA, and Salem N. “Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography.” J Lipid Res 50:1259-1268 (2009)
  5. Martins JG. “EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials.” J Am Coll Nutr 28:525-542 (2009)
  6. Sato M, Adan Y, Shibata K, Shoji Y, Sato H, and Imaizumi K. “Cloning of rat delta 6-desaturase and its regulation by dietary eicosapentaenoic or docosahexaenoic acid.” World Rev Nutr Diet 88:196-199 (2001)
  7. Stillwell W and Wassall SR. “Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1-27 (2003)
  8. Chapkin RS, McMurray DN, Davidson LA, Patil BS, Fan YY, and Lupton JR. “Bioactive dietary long-chain fatty acids: emerging mechanisms of action.” Br J Nutr 100:1152-1157 (2008)
  9. Li Q, Wang M, Tan L, Wang C, Ma J, Li N, Li Y, Xu G, and Li J. “Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts.” J Lipid Res 46:1904-1913 (2005)
  10. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, and Beilin LJ. “Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men.” Am J Clin Nutr 71:1085-1094 (2000)
  11. Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, Moorhead JF, and Varghese Z. “EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism.” Kidney Int 67:867-874 (2005)
  12. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, and Moussignac RL. “Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals.” J Exp Med 1996:1025-1037

Hard times are ahead

Last month was a red-letter month for the future of mankind as the world population passed 7 billion. Unfortunately, this fact dovetails with recent research that indicates it is likely that one-half of all Americans will be diabetic by 2050 (1).

The combination of these two trends does not bode well for the future. To begin with, how are we going to feed all these people? Most of the arable land on the planet is already under cultivation. Furthermore, urbanization is destroying prime cropland at a rapid pace.

Added to these facts is that the diversity of most of the world’s calories is rapidly decreasing. Currently the five top sources of calories in the world are corn, soybeans, wheat, rice and potatoes (as well as its kissin’ cousin cassava, which is incredibly poor in protein and nutrients). The first two crops (corn and soy) are rich sources of omega-6 fatty acids. In addition, corn, wheat, and rice provide extremely high-glycemic carbohydrates that can be easily refined to last forever and make thus a wide variety of processed foods. (Potatoes and cassava tend to decompose rapidly and can’t be easily refined, except perhaps as potato chips). As a consequence, omega-6 fatty acids and refined carbohydrates are now the cheapest form of calories in the world. In fact, it is estimated that they are 400 times less expensive per calorie than fresh fruits and vegetables.

So how can you feed this growing population of more than 7 billion people? The answer is easy—produce even more refined carbohydrates and omega-6 fatty acids.

Unfortunately, feeding the growing population of the world with cheap omega-6 fatty acids and refined carbohydrates is exactly the best way to increase cellular inflammation and drive the development of diabetes (2). It is estimated that by 2050 diabetes will be the primary non-infectious disease on the planet. This is equally bad news as it is also the most expensive chronic disease to treat on a long-term basis.

Today, more than 26 percent of all Americans older than 65 has diabetes. If the estimates of increased diabetes are correct (1), then it is likely that the number of Americans older than 65 in 2050 with diabetes may be greater than 50 percent. The current level of diabetes is the primary reason why our health-care expenses are spiraling out of control. If you double number of older Americans with diabetes by 2050, there is no way the current health-care system, as we know it can possibly survive. Add to the fact that once you have diabetes, you are 2-4 times more likely to develop heart disease and Alzheimer’s. It is not a very pleasant picture of the future of health care in America.

What can you do about it? On a global basis, not much unless you would like to see an apocalyptic event that reduces the population from 7 billion to a more manageable 1-2 billion individuals. Of course, this is highly unlikely. However, on the individual basis there is a lot you can do to protect yourself in the future. Simply take control of your future by focusing on managing cellular inflammation for a lifetime by following an anti-inflammatory diet. This may be your only real health security in times of increasing demands on the planet’s resources to produce food. There is no question that we have other troubles brewing like climate change, decreasing water supplies, and decreasing cheap energy, all of which will also impact the cost of food, driving more individuals toward inexpensive sources of calories no matter what the health consequences. But the rise of diabetes will occur first.

Old folks like myself will probably be OK, but the future generations will take the brunt of trouble brewing ahead.


  1. Boyle JP , Thompson TJ, Gregg EW, Barker LE, and Williamson DF. “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence.” Population Health Metrics 8:29 (2010)
  2. Sears B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)

Meditation: Push-ups for the brain?

Meditation has always been considered a “fringe” area of medicine. Although it has been around for thousands of years, it was never considered “high-tech”.

However, the development of new imaging technologies has finally given researchers the ability to ask some interesting questions about meditation and its effect on brain structure and cognitive performance.

When comparing brain wave patterns using old technologies like an EEG, it has been demonstrated that experienced meditators have higher levels of alpha waves (indicative of a relaxed brain) and lower levels of beta waves (indicative of focusing on intentional tasks or anxiety) during mediation (1). More recent imaging technology like the SPECT scan indicates that experienced meditators have improved cerebral blood flow (2). MRI technology has shown that experienced meditators have a greater density of grey matter in the brain (3), improved neural connections (4), and lower sensitivity to induced pain (5) when compared to matched control groups.

One of the problems with these types of studies has always been subject recruitment. The studies described above are simply various examples of case-control epidemiological studies. This type of study is often done in cancer epidemiology and is used to compare someone with cancer to a control without cancer to see if any differences are apparent (like if smoking is associated with lung cancer). The problem is that experienced meditators may already have different brain structures or improved neural networks and corresponding improved attention spans that attracted them to meditation in the first place. This is like comparing professional athletes to their fans watching them on TV and then looking for differences in fitness between the two groups.

Aware of these shortcomings, more recent, better controlled, shorter-term studies have taken either non-meditators or experienced meditators and put them into an intensive meditation program to be compared to equally matched subjects waiting to enter the same a program. Using a more tightly controlled group of subjects, it has been found that meditation does indeed have benefits in reducing sensitivity to pain (6), improving ability to modulate alpha waves that help reduce distractions (7), increasing brain grey matter (8), and increasing telomerase activity (9). The increased telomerase activity is usually associated with increased lifespan because when telomeres on the DNA become too short, the cell dies.

There are a lot of health benefits that stem from sitting in a comfortable chair thinking of nothing for at least 20 minutes a day. In fact, it is so easy that most people never get around to doing it.

So if you don’t have time to take at least 20 minutes a day to meditate, then consider taking high-dose fish oil. In as little as 35 days, you will see it also generates significant increases in the intensity of alpha waves, increased attention span, and improved mood (10) just like experienced meditators, who have spent years trying to reach the same goals. And if you maintain high levels of omega-3 fatty acids in your blood for a longer period of time, it appears that you get decreased telomere shortening that should help you live longer (11). And if you are worried about time, taking adequate levels of fish oil to get these benefits only takes 15 seconds a day.

Of course, if you were really smart, you would do both every day.


  1. Lagopoulos J, Xu J, Rasmussen I, Vik A, Malhi GS, Eliassen CF, Arntsen IE, Saether JG, Hollup S, Holen A, Davanger S, and Ellingsen O. “Increased theta and alpha EEG activity during nondirective meditation.” J Alt Complementary Medicine 15: 1187-1192 (2009)
  2. Newberg A, Alavi A, Baime M, Pourdehnad M, Santanna J, and d’Aquili E. “The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study.” Psychiatry Res 106: 113-122 (2001)
  3. Toga AW, Lepore N., Gaser C. The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter. Neuroimage 45: 672-678 (2009)
  4. Luders E, Clark K, Narr KL, Toga AW. “Enhanced brain connectivity in long-term meditation practitioners [In Process Citation] Neuroimage 57: 1308-1316 (2011)
  5. Grant JA, Courtemanche J, Duerden EG, Duncan GH, and Rainville P. “Cortical thickness and pain sensitivity in zen meditators.” Emotion 10: 43-53 (2010)
  6. Zeidan F, Martucci KT, Kraft RA, Gordon NS, McHaffie JG, and Coghill RC. “Brain mechanisms supporting the modulation of pain by mindfulness meditation.” J Neuroscience 31: 5540-5548 (2011)
  7. Kerr CE, Jones SR, Wan Q, Pritchett DL, Wasserman RH, Wexler A, Villanueva JJ, Shaw JR, Lazar SW, Kaptchuk TJ, Littenberg R, Hamalainen MS, and Moore CI. “Effects of mindfulness meditation training on anticipatory alpha modulation in primary somatosensory cortex.” Brain Research Bulletin 85: 96-103 (2011)
  8. Holzel BK, Carmody J, Vangel M, Congleton C, Yerramsetti SM, Gard T, and Lazar SW. “Mindfulness practice leads to increases in regional brain gray matter density.” Psychiatry Research 191: 36-43 (2011)
  9. Jacobs TL, Epel ES, Lin J, Blackburn EH, Wolkowitz OM, Bridwell DA, Zanesco AP, Aichele SR, Sahdra BK, Maclean KA, King BG, Shaver PR, Rosenberg EL, Ferrer E,; Wallace BA, and Saron CD. “Intensive meditation training, immune cell telomerase activity, and psychological mediators.” Psychoneuroendocrinology 36: 664-681 (2011)
  10. Fontani G, Corradeschi F, Felici A, Alfatti F, Migliorini S, and Lodi L. “Cognitive and physiological effects of omega-3 polyunsaturated fatty acid supplementation in healthy subjects.” Eur J Clin Invest 35: 691-
  11. Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, and Whooley MA. “Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease.” JAMA 303: 250-257 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

How to eliminate 50 percent of all coronary events

The European Society of Cardiology estimates a 50 percent reduction of coronary events if you can stabilize soft, vulnerable plaques (1). We are often led to believe that plaques you can see on an angiogram are “killer” plaques. It’s true that if they are large enough to obstruct blood flow, they will decrease oxygen transfer to the heart muscle cells making them more tired with less effort.

This is the definition of stable angina. It simply means it takes less effort to over-exert the heart muscles before they fatigue. However, you need approximately a 90 percent total obstruction of the blood vessel to develop stable angina. These plaques account for most of the plaques you might find in an angiogram. This is why if you take an angiogram, you are often immediately wheeled into the operating room to have a stent put into the artery with the belief you are only seconds away from an immediate heart attack and death.

However, the same angiogram can’t see a few plaques (because they are so small), known as the soft, vulnerable ones. When soft, vulnerable plaques rupture (like a pimple), then you have the death and disability (i.e., damaged heart tissue) that truly characterize heart disease. Technically, this is called an acute coronary event, and it has very little to do with the stable plaques that can cause angina. It is this small number of “rogue” soft, vulnerable plaques that are the true killers in heart disease (2,3).

The ultimate cause of plaque rupture is cellular inflammation inside the plaque. Cellular inflammation degrades the fibrous external coating of the plaque. Usually inside these soft, vulnerable plaques are also a lot of macrophages engorged with lipids. This is called the “necrotic core”. When the plaque bursts, these lipid pools are released into the bloodstream causing platelet aggregation and the rapid blockage of the artery resulting in a complete restriction of blood flow (as opposed to a limited restriction of blood flow with a typical stable plaque that will never rupture). It is estimated that about 75 percent of all coronary events are caused by ruptures of the soft, vulnerable plaques (2).

As I mentioned above, the really scary part of this story is that there is no type of imaging technology that can detect dangerous soft, vulnerable plaques. In essence, you don’t know if you have them or not. This is why the prediction of impeding cardiovascular events remains a guessing game. Even more interesting is that these soft, vulnerable plaques seem to form rather quickly (in about 10 years) as opposed to growing slowly over a lifetime (4). Moreover, the rate of growth of these soft, vulnerable plaques is strongly correlated with increasing insulin levels in the blood (4).

So what does this mean for people who don’t want to die from a sudden rupture of soft, vulnerable plaques that can’t be detected? The first thing is to reduce the inflammation within the plaque. Surprisingly, there is only one clinical study that has ever been published that addressed this question, and it used fish oil (5). This study indicated that if you give patients relatively high doses of fish oil, you could see a definite remodeling of the soft, vulnerable plaques in about 40 days compared to subjects taking a placebo composed of safflower oil. The plaques in the subjects taking the fish oil became less inflamed, had higher levels of omega-3 fatty acids, fewer macrophages and more well-formed fibrous caps compared to those taking the placebo. So taking a therapeutic level of fish oil for a lifetime seems to be a good way to reduce the rupture of these plaques.

Another way to potentially reduce their formation in the first place is lower insulin levels. The reason insulin levels are elevated is because organs, such as the adipose tissue, the liver and the muscles, are also inflamed (6). The best way to reduce that systemic inflammation is to follow the anti-inflammatory diet and take therapeutic levels of fish oil for a lifetime. Your success is best measured by the AA/EPA ratio in the blood. Call me crazy, but I think that’s what I have been recommending for the past 16 years (7).


  1. Yia-Herttulala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Merrmann J, Hoefer IM, Juekma JW, Krams R, Kwak BR, Marx N, Maruszeqica M, Newby A, Pasterkamp G, Serruys PWJC, Waltenberger J, Weber C, and Tokgozoglu L. “Stabilization of atherosclerotic plaques.” Thomobosis and Haemostasis 106: 1-19 (2011)
  2. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, Colombo A, Stefanadis C, Ward Casscells S, Moreno PR, Maseri A, and van der Steen AF. “Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque.” Eur Heart J 25: 1077-1082 (2004)
  3. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O’Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, and Hong Y. “Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.” Circulation 119:480-486 (2009)
  4. Hagg S, Salehpour M, Noori P, Lundstrom J, Possnert G, Takolander R, Konrad P, Rosfors S, Ruusalepp A, Skogsberg J, Tegner J, and Bjorkegren J. “Carotid plaque age is a feature of plaque stability inversely related to levels of plasma insulin.” PLoS One 6: e1824 (2011)
  5. Thies F, Garry JM, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, and Grimble RF. “Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomized controlled trial.” Lancet 2003 361: 477-485 (2003)
  6. Sears, B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  7. Sears B. “The Zone.” Regan Books. New York, NY (1995)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

The key to a healthy gut

Most people think all you need for a healthy gut is to consume bacterial-fortified yogurt products. In reality, the balance of bacteria in your gut may hold a key toward managing systemic inflammation in our bodies.

First of all, there are a lot of bacteria in our guts. The human body contains about 100 trillion cells, but the number of bacteria in the gut is 10 times greater in number. Furthermore, these bacteria are not just taking up space; they are actually providing numerous useful functions that make them a symbiotic “organ” to our own body. In particular, they can ferment carbohydrates to provide additional energy, make various vitamins, break down toxins we might ingest, and help prevent the growth of pathogenic bacteria.

Although there are literally millions of different bacteria in the world, only about 500 species actually reside in our guts. We also know that these gut bacteria can be further divided into three distinct bacterial ecosystems (1). Just like there are four unique blood groups that can classify every human, we also have three distinct bacterial systems. Once one of these systems becomes established in the gut, it begins to alter the gut environment that only certain species of other bacteria can follow and safely begin their symbiotic relationship with us.

So how does each ecosystem of bacteria keep out the bad apples (like Salmonella)? First of all, the bacteria in each distinct ecosystem have to alert our own immune cells in the intestine that they are friends, not foes. Apparently they have learned how to suppress the immune system in our own cells so they can co-exist in our gut (2). However, I believe even though these ecosystems of bacteria can be recognized as friends and not foes, they still need unique nutrients to help them act as the first line of defense against millions of other harmful bacteria.

Those nutrients are polyphenols. In the plant world, these polyphenols act as antibiotics against microbial attack. There is evidence that the “good” bacteria in our gut can use them as a means to help ward off invading bacteria that threaten our own unique bacterial fingerprint. Of course, the only way we can continue to help our unique bacterial partners in our gut is to continue to eat lots of fruits and vegetables that are rich in polyphenols. That’s why your grandmother told you to eat an apple a day to keep the doctor away.


  1. Arumugam M, Raes J, Pelletier E, et al. “Enterotypes of the human gut microbiome.” Nature DOI: 10.1038/nature09944 (2011)
  2. Round JL, Lee SM, Li Jennifer, Tran G, Bana J, Chatila TA and Mazmanian SK. “The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota.” Science DOI:10.1126/scienc.1206095 (2011)
  3. Moreno S, Scheyer T, Romano CS, and Vojnov AA. “Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition.” Free Radic Res 40: 223-231 (2006)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

What are we really entitled to?

For the past year the future of the American economy has centered on the word “entitlement,” especially in terms of health care. But no one is quite certain about what the word means. Social Security is not really an entitlement because it is a forced savings program that promises you the money you put into an old-age fund will be given back to you when you need it, some time in your 60s. The fact that the government has been using that account as a piggy bank to fund itself without raising taxes and leaving behind government I.O.U.s in place of the funds is another matter. But you are definitely entitled to at least get back the money you put into it.

Medicare is a completely different matter. In this case, you put very little money into a fund (which is also heavily borrowed from by the government), and you expect to get a lot more back. In my view, you are entitled to get back the money you paid into Medicare, and anything more should be considered a gift from a rich uncle (Sam), who is no longer very rich.

In an attempt to resolve this problem, Congressman Paul Ryan came up with a plan that went nowhere but had at least some intellectual merit: You pay into the medical fund for old age, and you get back what you paid in (and a little more) at age 67. The most notable feature of this plan was getting an annual voucher for about $6,000 based on 2012 dollars to be applied for private health insurance premiums after age 67.

At the current Medicare tax rate, the only way to pay in more than $6,000 into proposed trust fund on an annual basis is if you make more than $200,000 per year. Since there aren’t too many Americans making that type of salary, it’s your rich uncle who must make up the difference. Even if you were making $200,000 per year for 40 years and only planned to live another 15 years after retirement, it is still a pretty good deal, as it is forced savings for health-care insurance in the future. Any overpayment on your part will only help those who are not lucky enough to make $200,000 a year for 40 years. Unfortunately, this proposal was politically dead on arrival

The real problem with any health-care entitlement program was pointed out in a well-reasoned article in the May 19th issue of The New Republic — you can’t cure chronic disease, you can only manage it (1). In addition, new research analyses of the current state of Americans in old age indicates that we aren’t doing a very good job of managing chronic diseases (2). Although Americans are living longer, the length of life with chronic disease and loss of functional mobility (i.e. independent living) have rapidly increased since 1998. We are living longer because the elderly are essentially on life support generated by increasingly more expensive drugs that only marginally extend the lives of the very sick. We are not going to cure heart disease, cancer, stroke, and definitely not Alzheimer’s. The best we can do is to help manage their outcomes. Unfortunately, these are also diseases of the elderly, and the cost of increasing each year of life after 65 has risen from about $50,000 in the 1970s to nearly $150,000 in the 1990s. This could possibly be justified if the rich uncle were still rich.

The solution according to the authors of the New Republic article is redirecting the money that we can spend to maximize expenditures on public health care (prevention and elongation of independent living) as opposed to “curing” elderly with chronic disease that usually results in the decreased quality of life (1). The primary beneficiaries of this shift in medical thinking should be children followed by working adults, with the lowest health-care priority going to those over age 80. It sounds harsh, but that is exactly how socialized medicine works in Europe.

So what do you do to protect yourself in the future, especially if you are nearing 65? My suggestion is to start aggressively reducing cellular inflammation by following an anti-inflammatory diet and lifestyle. That’s the only thing you are really entitled to and that will also be the only thing your “rich” uncle can realistically pay for in the future.


  1. Callahan D and Nuland S. “The quagmire: how American medicine is destroying itself.” The New Republic. May 19, 2011
  2. Crimmins EM and Beltran-Sanchez H. “Mortality and morbidity trends: is there compression of morbidity?” J Gerontol B Physchol Soc Sci 66: 75-86 (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.