Trying to Make Science Out of Sausage

Epidemiology is the study of associations and not causality. It essentially began in 1854 when John Snow noticed that there seemed to be a higher concentration of cholera patients in a certain area in London during one of its many cholera epidemics in the 19th century. That’s an association. The real breakthrough for John Snow was to remove the pump handle on the suspected water source and then observe a significant reduction in the cases of cholera in that area. That’s called an intervention study based on epidemiology. Now in the 21st century we seem very reticent to do any type of intervention studies and rely more on epidemiology to guide our medical decisions. This is made even more confusing with the introduction of meta-analysis into the picture. Meta-analysis is taking a large number of studies (often done under very different conditions), pretending they are all valid and then coming up with a conclusion. When you do a meta-analysis on epidemiology studies, it’s like trying to separate a piece of filet mignon from intestines used to make sausage.

This month an article from the Annals of Internal Medicine suggested that there is no relationship of any type of fatty acid with heart disease (1). Well, if there is no association of any type of fatty acid with heart disease, why not just eat lard instead of salmon? If this sounds a little fishy to you (pardon the pun), it does to me too. As I stated earlier, the problem with meta-analysis is that good studies are added to bad ones. Here’s a dirty secret about medical research. There are a lot of bad studies that get published. Usually if you can’t get the funds to do original research, then you write a review paper, and if you can’t write a review paper, then you do a meta-analysis of all published studies and pretend it’s original research. The media might buy that, but I don’t.

The irony of this study is that one of the authors had actually published a good article using good controls in the same journal a year earlier indicating that the higher the levels of omega-3 fatty acids in the blood, the less heart disease death and the greater the longevity of the individuals (2). Maybe he forgot that article when publishing this new sausage publication (1).

That notwithstanding, the problem with these types of published studies is that they miss the point of what causes heart disease in the first place. It is not fatty acids or cholesterol, but inflammation. The best way to measure inflammation is the ratio of AA to EPA in the blood. This was first reported in the New England Journal of Medicine some 25 years ago (3). High-dose fish oil in healthy volunteers (5 grams of EPA and DHA per day) reduced the AA/EPA ratio from 21 to 2.5 within six weeks. During that time many of the additional markers of cellular inflammation also dropped. When they stopped the omega-3 fatty acid supplementation, the AA/EPA ratio gradually returned to its initial high level with a corresponding increase in the depressed inflammatory proteins to their initial levels. A very nice intervention study.

Then there is the disturbing fact that Japanese males have essentially the same LDL cholesterol levels as Americans, but Americans have 3.5 times the age-adjusted death rate. In fact, the LDL cholesterol levels of the Japanese having been rising since 1980, whereas American’s LDL cholesterol levels have been dropping. In addition, Japanese males in the study were about 7 times more likely to smoke than Americans. Let’s see, rising LDL cholesterol levels coupled with more smoking, but they have 72% fewer deaths from heart disease (4). Maybe the AA/EPA ratio as a marker of inflammation might be a key? The AA/EPA ratio of the Japanese in that study was 2.6, whereas the Americans were 11.1. Actually the Americans in this study were less inflamed than the general American population that has an AA/EPA ratio of 20 (5). But even in the above study, the Japanese AA/EPA ratio was 76% lower than the Americans (4). Let’s see, the Japanese had 76% lower inflammation and 72% lower mortality from heart disease compared to the Americans even through their LDL cholesterol levels were the same and they smoked like chimneys. If I was a betting man, I would put my money on doing an intervention study to see what the effect on heart disease would be if I lowered the AA/EPA ratio. That’s exactly what the Japanese did with the JELIS trial that was one of the largest cardiovascular trials ever undertaken with some 18,000 subjects (6). All of them had high cholesterol, so all of them were put on statins. The average AA/EPA ratio of these subjects was 1.6 compared to the 20 in Americans (5,6). Half the subjects were then given more omega-3 fatty acids. If the meta-analysis study recently published was valid (1), then these extra omega-3 fatty acids would have no benefit especially since everyone was getting a statin. Actually, just the reverse occurred after 3 ½ years. Those who lowered their AA/EPA ratio had 20% fewer cardiovascular events compared to those that didn’t see a change in the placebo group. Further sub-group analysis indicated that the change in the AA/EPA ratio was the overriding factor (7) behind these cardiovascular benefits. This is a complicated way of saying that if you lower inflammation, you lower cardiovascular risk.

So the next time you read about a meta-analysis study on the lack of effect of fatty acids on heart disease, ask to see a real intervention trial that lowers the levels of inflammation. When you do, then you see a very different picture of the role of fatty acids in heart disease than you do by reading more sausage studies (1,8). And if you do an intervention trial with omega-3 fatty acids, make sure that you lower the AA/EPA ratio to the level found in the Japanese. Based on published dose-response studies, this will take a minimum of 5 grams of EPA and DHA per day (9). Up to this point in time, no such cardiovascular studies have been conducted with that level of omega-3 fatty acids. If you are not using at least that level of omega-3 fatty acids to study cardiovascular disease, then you are probably using a placebo dose and should expect placebo results.

References

  1. Chowdhury R et al. “Association of dietary, circulating, and supplement fatty acids coronary risk.” Ann Intern Med 160:396-406 (2014)
  2. Mozaffarian D et al. “Plasma phospholipid long-chain omega-3 fatty acids and total and cause-specific mortality in older adults.” Ann Intern Med 158:515-525 (2013)
  3. Enders S et al. “The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells.” New Engl J Med 320:265-271 (1989)
  4. Sekikawa A et al. “Serum levels of marine-derive n-3 fatty acids in Icelanders, Japanese, Koreans and Americans.” Prostglandins Leukot Essent Fatty Acids 87:11-16 (2012)
  5. Harris WS et al. “Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: observations from 160,000 patients.” Prostaglandins Leukot Essent Fatty Acids 88:257-263 (2013)
  6. Yokoyama M et al. “Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.” Lancet 369:1090-1098 (2007)
  7. Matsuzaki M et al. “Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease.” Circ J 73:1283-1290 (2009)
  8. Rizos EC et al. “Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis.” JAMA 308:1024-1033 (2012)
  9. Yee LD et al. “Omega-3 fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition.” Am J Clin Nutr 91:1184-1194 (2010)

Practical hints for helping to manage brain trauma

Since the recent story on CNN (“He’s going to be better than he was before,” Jan. 18, 2014,) about the extraordinary recovery of Grant Virgin from severe brain trauma, I have gotten a lot of requests for information. Since I have been doing this protocol for more than seven years after first working with Dr. Julian Bailes on the equally remarkable recovery of Randal McCloy Jr. (the sole survivor of the Sago mine disaster in 2006) and others (1,2), I can offer some broad guidelines. Make no mistake, each case is different, but these guidelines will considerably help your decision-making process.

What Type of Fish Oil to Use

Purity

When is comes to treating brain trauma, purity and potency of the omega-3 product count. All fish and all fish-oil products are contaminated with various toxins. The most important is polychlorinated biphenyls or PCBs. These are known neurotoxins. It makes little sense giving someone a fish-oil product that is rich in PCBs. One of the dirty secrets of the fish-oil manufacturing industry is that it is extremely difficult to remove PCBs from a final product. In fact, it is so difficult, the industry tries to ignore it. Making a statement that a fish-oil product is free from PCBs is an outright lie. It is equally ridiculous to state that the PCBs levels in its products are lower than the international standards. Those international PCB standards (90 parts per billion or ppb) are so lax that virtually any fish-oil product in the supermarket is going to exceed them. Of course, if you want to heal the brain, then I would recommend looking for the purest fish oil you can find. If you are even considering using fish oil, make sure that the levels of total PCBs are less than 5 ppb. This is 18 times lower than the international standard. Using this more rigorous criterion of purity, your choices become very limited. Furthermore, PCB levels will vary from lot to lot. So you want to make sure that the lot you are actually using contains less than 5 ppb. Go to the product’s website or call the manufacturer. If the manufacturers can’t supply that data, it means they don’t know. If they said it is pure, then they mean it might pass the very lax international standards. Here’s a good rule about fish oils: Trust but always verify. PCB testing is expensive but so is saving a brain. Of course, if you don’t care about potential PCB accumulation in the brain, then use the cheapest fish-oil product you can find.

Potency

You are going to have to use a lot of fish oil to put out the inflammation in the brain and to rebuild it. Therefore, the potency of the fish oil counts. I would never recommend any fish-oil product containing any less than 60% EPA and DHA. Usually the higher the potency of the fish oil, the higher the purity, but not always. Removal of PCBs is very different than increasing omega-3 fatty acid potency. I have tested many high-potency fish oils that also have high PCB levels. Likewise, the omega-3 fatty acids levels will vary from lot to lot. Before you use any omega-3 fatty-acid product, ask for the potency of that particular lot. If company representatives can’t provide it or say it meets their standards, then it means they don’t really know.

The fish oil needs to contain both EPA and DHA. EPA puts out the inflammation in the brain, and DHA helps rebuild the brain. You need both. I usually recommend a 2:1 ratio of EPA to DHA as that is the ratio I have used for several years with great success.

Omega-3 fatty acids are prone to oxidation, which leads to rancidity. The rancidity comes from breakdown products of the fatty acids into aldehydes and ketones that can cause damage to the DNA. That’s why there is an international rancidity standard (called total oxidation or TOTOX) that governs all edible oil trading in the world. Before you use any fish oil product, ask for the TOTOX levels of the finished product (not the raw materials). If it is less than 26 meq/kg (the upper limit for an edible oil), then it is OK to use. If not, don’t even consider it.

Amounts

Even if you if you have a high-quality fish-oil product, you are going to need a lot for brain injuries. This will usually be in the range of 10-15 grams of EPA and DHA per day. That’s why you need the high-purity and high-potency fish oil. Because of the high amounts, it will have to be given in a liquid format. Why the high doses? Because you have to put out the fire in the brain before you can rebuild it.

The levels of fish oil needed are based on testing, not guessing. The best test for the levels of fish oil required is the ratio of two fatty acids in the blood. One is arachidonic acid (AA), and the other is EPA. Why this is important is because AA causes inflammation, and EPA reverses inflammation. You measure the levels of AA and EPA using a simple finger-stick blood test. The AA/EPA ratio is not a standard clinical test, but it has been in medical research for nearly 30 years, starting first at Harvard Medical School (3). The AA/EPA ratio will tell you how much a pure fish oil product you need as you want the AA/EPA ratio to be in the range of 1.5 to 3. If the AA/EPA ratio is higher than 3, you will need more fish oil. If AA/EPA is less than 1.5, you will need less fish oil. Maintaining the AA/EPA between 1.5 and 3 addresses the largest concern of using high-dose fish oil, which is potential bleeding. I chose an AA/EPA ratio of 1.5 as my lower limit since that is what it is in the Japanese population, and they don’t bleed to death (4-11).

The most inexpensive test for the AA/EPA ratio can be found at www.zonediagnostics.com.

Why drugs don’t work, and fish oil does

With severe brain trauma, the usual response of the physician is “we just have to wait”. The reason why is because there are no drugs that can cross the blood-brain barrier to put out the inflammation in the brain. That is not true with omega-3 fatty acids. They can easily enter the brain if there are high enough levels in the blood. What is the correct level in the blood? The AA/EPA ratio will tell you. Not only should the AA/EPA ratio be between 1.5 and 3, but also the EPA levels should be greater than 4% of the total fatty acids in the blood.

What Else?

When using high levels of fish oil even if it is pure and potent, you still have to emulsify it to reduce the size of oil droplets for better absorption. One of the best methods to emulsify liquid fish oil is to mix it with either a seaweed or an aloe vera product to reduce the size of the oil droplets to increase the absorption into the blood.

You also have to provide extra anti-oxidant protection to protect the omega-3 fatty acids from oxidation. The best way is using polyphenols to be mixed with the fish oil before administration. Adding extra virgin olive oil is a good choice. Adding highly purified polyphenol extracts to the liquid fish oil is a better choice.

What to expect

Each case is different. Based on my experience if you are using the correct amount of omega-3 fatty acids, you should see the beginnings of a response within 60 days. In Grant’s case, it was two days. If you do, then continue the same level of fish oil since putting out the inflammatory fire is only the first step of the process. The next step is rebuilding the brain. I would suggest monitoring the AA/EPA ratio every 30 days for the first 60 days and then every 60 days thereafter to make sure you are giving the right amount of fish oil.

Most importantly, this is not a Mr. Wizard home experiment. You should always be working with your physicians, not against them. They will also need education in the use and safety of high-dose fish oil, but this short summary is a good start.

Don’t expect any reimbursement from your insurance company for the use of the fish oil or AA/EPA testing. It may seem expensive, but compared to the human suffering of not trying to rebuild the brain, the costs of both the fish oil and AA/EPA testing are minor. I would also consider using flexible- spending health-care accounts if you have access to them to lower the overall cost, since they are based on pre-tax income.

Taking fish oil and following an anti-inflammatory diet is key

One of the reasons for Grant Virgin’s rapid progress was the fact that he was already taking moderate doses of fish oil for a medical condition. This meant he already had some reserve capacity in the body and the brain to reduce the inflammatory burden caused by a hit-and-run accident. You never know when brain trauma will occur. Maintaining a relatively low AA/EPA ratio in the blood is your best insurance policy for protection against future brain trauma if it does strike. You don’t have to be as aggressive as in the treatment phase, but aim for keeping the AA/EPA ratio between 5 and 10 in the blood. For comparison, the average American has an AA/EPA ratio of 20 (12). When dealing with brain trauma, an ounce of prevention is worth pounds of cure.

Finally, to accelerate the healing and rebuilding of the brain, you want to be following an anti-inflammatory diet (13-15). An anti-inflammatory diet is one that reduces the production of AA that drives inflammation in the brain. The less AA you have in the blood, the less AA gets into the brain. Try to keep the AA level in the blood to less than 9% of the total fatty acids. This takes more work than simply giving fish oil, but the more you reduce the levels of AA in the blood, the less high-dose fish you will need to maintain the AA/EPA ratio required to accelerate the healing and rebuilding process in the brain.

References

  1. Roberts L, Bailes J, Dedhia H, Zikos A, Singh A, McDowell D, Failinger C, Biundo R, Petrick J, and Carpenter J. “Surviving a mine explosion.” J Am Coll Surg 207:276-283 (2008)
  2. Sears B, Bailes J, and Asselin B. “Therapeutic use of high-dose omega-3 fatty acids to treat comatose patients with severe brain injury.” PhamaNutrition 1: 86-89 (2013)
  3. Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, van der Meer JW, Cannon JG, Rogers TS, Klempner MS, Weber PC, Schaefer EJ, Wolff SM, and Dinarello CA. “The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells.” N Engl J Med 320:265-271 (1989)
  4. Swails WS, Bell SJ, Bistrian BR, Lewis EJ, Pfister D, Forse RA, Kelly S, Blackburn GL. “Fish-oil-containing diet and platelet aggregation.” Nutrition 9:211-217 (1993)
  5. Parkinson AJ, Cruz AL, Heyward WL, Bulkow LR, Hall D, Barstaed L, and Connor WE. “Elevated concentrations of plasma omega-3 polyunsaturated fatty acids among Alaskan Eskimos”. Am J Clin Nutr 59:384-388 (1994)
  6. Eritsland J, Arnesen H, Seljeflot I, andKierulf P. “Long-term effects of n-3 polyunsaturated fatty acids on haemostatic variables and bleeding episodes in patients with coronary artery disease.” Blood Coagul Fibrinolysis 6:17-22 (1995)
  7. Watson PD, Joy PS, Nkonde C, Hessen SE, and Karalis DG.
    Comparison of bleeding complications with omega-3 fatty acids + aspirin + clopidogrel–versus–aspirin + clopidogrel in patients with cardiovascular disease. Am J Cardiol 104:1052-1054 (2009)
  8. Salisbury AC, Harris WS, Amin AP, Reid KJ, O’Keefe JH, and Spertus JA.
    “Relation between red blood cell omega-3 fatty acid index and bleeding during acute myocardial infarction.” Am J Cardiol 109:13-18 (2012)
  9. Larson MK, Ashmore JH, Harris KA, Vogelaar JL, Pottala JV, Sprehe M, and Harris WS. “Effects of omega-3 acid ethyl esters and aspirin, alone and in combination, on platelet function in healthy subjects.” Thromb Haemost 100:634-641 (2008)
  10. Harris WS. “Expert opinion: omega-3 fatty acids and bleeding-cause for concern?” Am J Cardiol 99:44C-46C (2007)
  11. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S,Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, and Shirato K. “Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.” Lancet 369: 1090-1098 (2007)
  12. Harris WS, Pottala JV, Varvel SA, Borowski JJ, Ward JN, and McConnell JP. “Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: observations from 160,000 patients.” Prostaglandins Leukot Essent Fatty Acids 88:257-263 (2013)
  13. Sears B. The Zone. Regan Books. New York, NY (1995)
  14. Sears B. The OmegaRx Zone. Regan Books. New York, NY (2002)
  15. Sears B. The Anti-inflammation Zone. Regan Books. New York, NY (2005)

How to eliminate 50 percent of all coronary events

The European Society of Cardiology estimates a 50 percent reduction of coronary events if you can stabilize soft, vulnerable plaques (1). We are often led to believe that plaques you can see on an angiogram are “killer” plaques. It’s true that if they are large enough to obstruct blood flow, they will decrease oxygen transfer to the heart muscle cells making them more tired with less effort.

This is the definition of stable angina. It simply means it takes less effort to over-exert the heart muscles before they fatigue. However, you need approximately a 90 percent total obstruction of the blood vessel to develop stable angina. These plaques account for most of the plaques you might find in an angiogram. This is why if you take an angiogram, you are often immediately wheeled into the operating room to have a stent put into the artery with the belief you are only seconds away from an immediate heart attack and death.

However, the same angiogram can’t see a few plaques (because they are so small), known as the soft, vulnerable ones. When soft, vulnerable plaques rupture (like a pimple), then you have the death and disability (i.e., damaged heart tissue) that truly characterize heart disease. Technically, this is called an acute coronary event, and it has very little to do with the stable plaques that can cause angina. It is this small number of “rogue” soft, vulnerable plaques that are the true killers in heart disease (2,3).

The ultimate cause of plaque rupture is cellular inflammation inside the plaque. Cellular inflammation degrades the fibrous external coating of the plaque. Usually inside these soft, vulnerable plaques are also a lot of macrophages engorged with lipids. This is called the “necrotic core”. When the plaque bursts, these lipid pools are released into the bloodstream causing platelet aggregation and the rapid blockage of the artery resulting in a complete restriction of blood flow (as opposed to a limited restriction of blood flow with a typical stable plaque that will never rupture). It is estimated that about 75 percent of all coronary events are caused by ruptures of the soft, vulnerable plaques (2).

As I mentioned above, the really scary part of this story is that there is no type of imaging technology that can detect dangerous soft, vulnerable plaques. In essence, you don’t know if you have them or not. This is why the prediction of impeding cardiovascular events remains a guessing game. Even more interesting is that these soft, vulnerable plaques seem to form rather quickly (in about 10 years) as opposed to growing slowly over a lifetime (4). Moreover, the rate of growth of these soft, vulnerable plaques is strongly correlated with increasing insulin levels in the blood (4).

So what does this mean for people who don’t want to die from a sudden rupture of soft, vulnerable plaques that can’t be detected? The first thing is to reduce the inflammation within the plaque. Surprisingly, there is only one clinical study that has ever been published that addressed this question, and it used fish oil (5). This study indicated that if you give patients relatively high doses of fish oil, you could see a definite remodeling of the soft, vulnerable plaques in about 40 days compared to subjects taking a placebo composed of safflower oil. The plaques in the subjects taking the fish oil became less inflamed, had higher levels of omega-3 fatty acids, fewer macrophages and more well-formed fibrous caps compared to those taking the placebo. So taking a therapeutic level of fish oil for a lifetime seems to be a good way to reduce the rupture of these plaques.

Another way to potentially reduce their formation in the first place is lower insulin levels. The reason insulin levels are elevated is because organs, such as the adipose tissue, the liver and the muscles, are also inflamed (6). The best way to reduce that systemic inflammation is to follow the anti-inflammatory diet and take therapeutic levels of fish oil for a lifetime. Your success is best measured by the AA/EPA ratio in the blood. Call me crazy, but I think that’s what I have been recommending for the past 16 years (7).

References

  1. Yia-Herttulala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Merrmann J, Hoefer IM, Juekma JW, Krams R, Kwak BR, Marx N, Maruszeqica M, Newby A, Pasterkamp G, Serruys PWJC, Waltenberger J, Weber C, and Tokgozoglu L. “Stabilization of atherosclerotic plaques.” Thomobosis and Haemostasis 106: 1-19 (2011)
  2. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, Colombo A, Stefanadis C, Ward Casscells S, Moreno PR, Maseri A, and van der Steen AF. “Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque.” Eur Heart J 25: 1077-1082 (2004)
  3. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O’Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, and Hong Y. “Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.” Circulation 119:480-486 (2009)
  4. Hagg S, Salehpour M, Noori P, Lundstrom J, Possnert G, Takolander R, Konrad P, Rosfors S, Ruusalepp A, Skogsberg J, Tegner J, and Bjorkegren J. “Carotid plaque age is a feature of plaque stability inversely related to levels of plasma insulin.” PLoS One 6: e1824 (2011)
  5. Thies F, Garry JM, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, and Grimble RF. “Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomized controlled trial.” Lancet 2003 361: 477-485 (2003)
  6. Sears, B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  7. Sears B. “The Zone.” Regan Books. New York, NY (1995)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Pass the salt please?

One of the great “truths” in cardiovascular medicine is that to prevent stroke and cardiovascular death you reduce your salt intake. But is it true? A new analysis of the existing literature from the Cochrane Library indicates this may not be the case (1). Analyzing a great number of published studies, researchers came to the conclusion that there is no strong evidence to support the idea that salt restriction reduces cardiovascular disease or all-cause mortality in people with either normal or increased blood pressure. Furthermore, they found that while reducing salt intake did decrease blood pressure, it also increased the risk of all-cause death in people with existing congestive heart failure.

If that wasn’t enough, an article in the May 4 issue of the Journal of the American Heart Association found that low salt increased the risk of death from heart attacks and stokes, while not reducing blood pressure (2). This study was done with middle-aged Europeans and followed them for nearly eight years. During this time, the less salt they consumed, the greater the number who died of heart disease.

Needless to say, the American Heart Association (the same people who recommend eating lots of omega-6 fats) was enraged, similar to the Wizard of Oz telling Dorothy to ignore the man behind the curtain.

So why might restriction of salt consumption cause increased heart attacks? The reason may be due to increased insulin resistance induced by salt restriction (3). Insulin resistance increases insulin levels, and if that is combined with increased consumption of omega-6 fatty acids (remember the American Heart Association), you now have a sure-fire prescription to produce more arachidonic acid. It’s the inflammatory eicosanoids derived from arachidionic acid that would cause inflammation in the arterial wall leading to a heart attack.

This is not to say that some people are not salt-sensitive (African-Americans are particularly so), but I believe the problem is more a matter of balance. You need some sodium, but you also need potassium to balance it. This is confirmed by a recent study from Harvard Medical School that demonstrates that the higher the sodium-to-potassium ratio in the blood, the greater the likelihood of cardiovascular mortality (4). The relationship for increased death was significantly greater for a high sodium-to-potassium level than simply the sodium level itself.

Getting sodium in your diet is easy (sprinkle salt on your food), but getting adequate levels of potassium means eating a lot of fruits and vegetables. So rather than restricting salt intake or taking drugs (i.e. diuretics) to reduce the levels of sodium in the body, think about eating more fruits and vegetables if your goal is to reduce the likelihood of a heart attack. Oh, yes, also ignore the advice of American Heart Association and take more omega-3 and less omega-6 fatty acids.

References

  1. Taylor, RS, Ashton KE, Moxham T, Hooper L and Ebrahim S. “Reduced dietary salt for the prevention of cardiovascular disease.” Cochrane Database of Systematic Reviews DOI: 10.1002/14651858.CD009217 (2011)
  2. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerova J, Richart T, Jin Y, Olszanecka A, Malyutina S, Casiglia E, Filipovsky J, Kawecka-Jaszcz K, Nikitin Y, and Staessen JA. “Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion.” JAMA 305: 1777-1785 (2011)
  3. Alderman MH. “Evidence relating dietary sodium to cardiovascular disease.” J Am Coll Nutr 25: 256S-261S (2006)
  4. Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, Chang M-H, Gwinn M, Dowling N, Khoury MJ, and Hu FB. “Sodium and potassium intake and morality among US adults.” Arch Intern Med 171: 1183-1191 (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

The key to a healthy gut

Most people think all you need for a healthy gut is to consume bacterial-fortified yogurt products. In reality, the balance of bacteria in your gut may hold a key toward managing systemic inflammation in our bodies.

First of all, there are a lot of bacteria in our guts. The human body contains about 100 trillion cells, but the number of bacteria in the gut is 10 times greater in number. Furthermore, these bacteria are not just taking up space; they are actually providing numerous useful functions that make them a symbiotic “organ” to our own body. In particular, they can ferment carbohydrates to provide additional energy, make various vitamins, break down toxins we might ingest, and help prevent the growth of pathogenic bacteria.

Although there are literally millions of different bacteria in the world, only about 500 species actually reside in our guts. We also know that these gut bacteria can be further divided into three distinct bacterial ecosystems (1). Just like there are four unique blood groups that can classify every human, we also have three distinct bacterial systems. Once one of these systems becomes established in the gut, it begins to alter the gut environment that only certain species of other bacteria can follow and safely begin their symbiotic relationship with us.

So how does each ecosystem of bacteria keep out the bad apples (like Salmonella)? First of all, the bacteria in each distinct ecosystem have to alert our own immune cells in the intestine that they are friends, not foes. Apparently they have learned how to suppress the immune system in our own cells so they can co-exist in our gut (2). However, I believe even though these ecosystems of bacteria can be recognized as friends and not foes, they still need unique nutrients to help them act as the first line of defense against millions of other harmful bacteria.

Those nutrients are polyphenols. In the plant world, these polyphenols act as antibiotics against microbial attack. There is evidence that the “good” bacteria in our gut can use them as a means to help ward off invading bacteria that threaten our own unique bacterial fingerprint. Of course, the only way we can continue to help our unique bacterial partners in our gut is to continue to eat lots of fruits and vegetables that are rich in polyphenols. That’s why your grandmother told you to eat an apple a day to keep the doctor away.

References

  1. Arumugam M, Raes J, Pelletier E, et al. “Enterotypes of the human gut microbiome.” Nature DOI: 10.1038/nature09944 (2011)
  2. Round JL, Lee SM, Li Jennifer, Tran G, Bana J, Chatila TA and Mazmanian SK. “The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota.” Science DOI:10.1126/scienc.1206095 (2011)
  3. Moreno S, Scheyer T, Romano CS, and Vojnov AA. “Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition.” Free Radic Res 40: 223-231 (2006)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Zone diet validation studies

Weight Loss

Any diet that restricts calories will result in equivalent weight loss. However, the same doesn’t hold true as to what the source of that weight loss is. Weight loss from either dehydration (such as ketogenic diets) or cannibalization of muscle and organ mass (such as low-protein diets) has no health benefits. Only when the weight loss source is from stored fat do you gain any health benefits. Here the Zone diet has been shown to be superior to all other diets in burning fat faster (1-4). It has been demonstrated that if a person has a high initial insulin response to a glucose challenge, then the Zone diet is also superior in weight loss (5,6). A recent study from the New England Journal of Medicine indicates that a diet composition similar to the Zone diet is superior to other compositions in preventing the regain of lost weight (7). This is probably caused by the increased satiety induced by the Zone diet compared to other diets (1,8,9).

Reduction of cellular inflammation

There is total agreement in the research literature that the Zone diet is superior in reducing cellular inflammation (10-12). Since cellular inflammation is the driving force for chronic disease, then this should be the ultimate goal of any diet. Call me crazy for thinking otherwise.

Heart disease

It is ironic that the Ornish diet is still considered one of the best diets for heart disease, since the published data indicates that twice as many people had fatal heart attacks on the Ornish diet compared to a control diet (13). This is definitely the case of don’t confuse me with the facts. On the other hand, diets with the same balance of protein, carbohydrate and fat as the Zone diet has have been shown to be superior in reducing cardiovascular risk factors, such as cholesterol and fasting insulin (14,15).

Diabetes

The first publication validating the benefits of the Zone diet in treating diabetes appeared in 1998 (16). Since that time there have been several other studies indicating the superiority of the Zone diet composition for reducing blood glucose levels (17-20). In 2005, the Joslin Diabetes Research Center at Harvard Medical School announced its new dietary guidelines for treating obesity and diabetes. These dietary guidelines were essentially identical to the Zone diet. Studies done at the Joslin Diabetes Research Center following those dietary guidelines confirm the efficacy of the Zone diet to reduce diabetic risk factors (21). If the Zone diet isn’t recommended for individuals with diabetes, then someone should tell Harvard.

Ease of use

The Zone diet simply requires balancing one-third of your plate with low-fat protein with the other two-thirds coming from fruits and vegetables (i.e. colorful carbohydrates). Then you add a dash (that’s a small amount) of heart-healthy monounsaturated fats. The Zone diet is based on a bell-shaped curve balancing low-fat protein and low-glycemic-index carbohydrates, not a particular magic number. If you balance the plate as described above using your hand and your eye, it will approximate 40 percent of the calories as carbohydrates, 30 percent of calories as protein, and 30 percent of the calories as fat. Furthermore, it was found in a recent Stanford University study that the Zone diet provided greater amounts of micronutrients on a calorie-restricted program than any other diet (22).

Eventually all dietary theories have to be analyzed in the crucible of experimentation to determine their validity. So far in the past 13 years since I wrote my first book, my concepts of anti-inflammatory nutrition still seem to be at the cutting edge.

References

  1. Skov AR, Toubro S, Ronn B, Holm L, and Astrup A. “Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity.” Int J Obes Relat Metab Disord 23: 528-536 (1999)
  2. Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, Sather C, and Christou DD. “A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women.” J Nutr 133: 411-417 (2003)
  3. Fontani G, Corradeschi F, Felici A, Alfatti F, Bugarini R, Fiaschi AI, Cerretani D, Montorfano G, Rizzo AM, and Berra B. “Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with omega-3 polyunsaturated fatty acids.” Eur J Clin Invest 35: 499-507 (2005)
  4. Layman DK, Evans EM, Erickson D, Seyler J, Weber J, Bagshaw D, Griel A, Psota T, and Kris-Etherton P. “A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults.” J Nutr 139: 514-521 (2009)
  5. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, and Ludwig DS. “Effects of a low-glycemic-load vs low-fat diet in obese young adults: a randomized trial.” JAMA 297: 2092-2102 (2007)
  6. Pittas AG, Das SK, Hajduk CL, Golden J, Saltzman E, Stark PC, Greenberg AS, and Roberts SB. “A low-glycemic-load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial.” Diabetes Care 28: 2939-2941 (2005)
  7. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S, Holst C, Saris WH, and Astrup A. “Diets with high or low protein content and glycemic index for weight-loss maintenance.” N Engl J Med 363: 2102-2113 (2010)
  8. Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB, Agus MS, Swain JF, Larson CL, and Eckert EA. “Dietary high-glycemic-index foods, overeating, and obesity.” Pediatrics 103: E26 (1999)
  9. Agus MS, Swain JF, Larson CL, Eckert EA, and Ludwig DS. “Dietary composition and physiologic adaptations to energy restriction.” Am J Clin Nutr 71: 901-907 (2000)
  10. Pereira MA, Swain J, Goldfine AB, Rifai N, and Ludwig DS. “Effects of a low-glycemic-load diet on resting energy expenditure and heart disease risk factors during weight loss.” JAMA 292: 2482-2490 (2004)
  11. Pittas AG, Roberts SB, Das SK, Gilhooly CH, Saltzman E, Golden J, Stark PC, and Greenberg AS. “The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss.” Obesity 14: 2200-2209 (2006)
  12. Johnston CS, Tjonn SL, Swan PD, White A, Hutchins H, and Sears B. “Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.” Am J Clin Nutr 83: 1055-1061 (2006)
  13. Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merritt TA, Sparler S, Armstrong WT, Ports TA, Kirkeeide RL, Hogeboom C, and Brand RJ, “Intensive lifestyle changes for reversal of coronary heart disease.” JAMA 280: 2001-2007 (1998)
  14. Wolfe BM and Piche LA. “Replacement of carbohydrate by protein in a conventional-fat diet reduces cholesterol and triglyceride concentrations in healthy normolipidemic subjects.” Clin Invest Med 22: 140-1488 (1999)
  15. Dumesnil JG, Turgeon J, Tremblay A, Poirier P, Gilbert M, Gagnon L, St-Pierre S, Garneau C, Lemieux I, Pascot A, Bergeron J, and Despres JP. “Effect of a low-glycaemic index, low-fat, high-protein diet on the atherogenic metabolic risk profile of abdominally obese men.” Br J Nutr 86:557-568 (2001)
  16. Markovic TP, Campbell LV, Balasubramanian S, Jenkins AB, Fleury AC, Simons LA, and Chisholm DJ. “Beneficial effect on average lipid levels from energy restriction and fat loss in obese individuals with or without type 2 diabetes.” Diabetes Care 21: 695-700 (1998)
  17. Layman DK, Shiue H, Sather C, Erickson DJ, and Baum J. “Increased dietary protein modifies glucose and insulin homeostasis in adult women during weight loss.” J Nutr 133: 405-410 (2003)
  18. Gannon MC, Nuttall FQ, Saeed A, Jordan K, and Hoover H. “An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes.” Am J Clin Nutr 78: 734-741 (2003)
  19. Nuttall FQ, Gannon MC, Saeed A, Jordan K, and Hoover H. “The metabolic response of subjects with type 2 diabetes to a high-protein, weight-maintenance diet.” J Clin Endocrinol Metab 2003 88: 3577-3583 (2003)
  20. Gannon MC and Nuttall FQ. “Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition.” Nutr Metab (Lond) 3: 16 (2006)
  21. Hamdy O and Carver C. “The Why WAIT program: improving clinical outcomes through weight management in type 2 diabetes.” Curr Diab Rep 8: 413-420 (2008)
  22. Gardner CD, Kim S, Bersamin A, Dopler-Nelson M, Otten J, Oelrich B, and Cherin R. “Micronutrient quality of weight-loss diets that focus on macronutrients: results from the A TO Z study.” Am J Clin Nutr 92: 304-312 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

What are we really entitled to?

For the past year the future of the American economy has centered on the word “entitlement,” especially in terms of health care. But no one is quite certain about what the word means. Social Security is not really an entitlement because it is a forced savings program that promises you the money you put into an old-age fund will be given back to you when you need it, some time in your 60s. The fact that the government has been using that account as a piggy bank to fund itself without raising taxes and leaving behind government I.O.U.s in place of the funds is another matter. But you are definitely entitled to at least get back the money you put into it.

Medicare is a completely different matter. In this case, you put very little money into a fund (which is also heavily borrowed from by the government), and you expect to get a lot more back. In my view, you are entitled to get back the money you paid into Medicare, and anything more should be considered a gift from a rich uncle (Sam), who is no longer very rich.

In an attempt to resolve this problem, Congressman Paul Ryan came up with a plan that went nowhere but had at least some intellectual merit: You pay into the medical fund for old age, and you get back what you paid in (and a little more) at age 67. The most notable feature of this plan was getting an annual voucher for about $6,000 based on 2012 dollars to be applied for private health insurance premiums after age 67.

At the current Medicare tax rate, the only way to pay in more than $6,000 into proposed trust fund on an annual basis is if you make more than $200,000 per year. Since there aren’t too many Americans making that type of salary, it’s your rich uncle who must make up the difference. Even if you were making $200,000 per year for 40 years and only planned to live another 15 years after retirement, it is still a pretty good deal, as it is forced savings for health-care insurance in the future. Any overpayment on your part will only help those who are not lucky enough to make $200,000 a year for 40 years. Unfortunately, this proposal was politically dead on arrival

The real problem with any health-care entitlement program was pointed out in a well-reasoned article in the May 19th issue of The New Republic — you can’t cure chronic disease, you can only manage it (1). In addition, new research analyses of the current state of Americans in old age indicates that we aren’t doing a very good job of managing chronic diseases (2). Although Americans are living longer, the length of life with chronic disease and loss of functional mobility (i.e. independent living) have rapidly increased since 1998. We are living longer because the elderly are essentially on life support generated by increasingly more expensive drugs that only marginally extend the lives of the very sick. We are not going to cure heart disease, cancer, stroke, and definitely not Alzheimer’s. The best we can do is to help manage their outcomes. Unfortunately, these are also diseases of the elderly, and the cost of increasing each year of life after 65 has risen from about $50,000 in the 1970s to nearly $150,000 in the 1990s. This could possibly be justified if the rich uncle were still rich.

The solution according to the authors of the New Republic article is redirecting the money that we can spend to maximize expenditures on public health care (prevention and elongation of independent living) as opposed to “curing” elderly with chronic disease that usually results in the decreased quality of life (1). The primary beneficiaries of this shift in medical thinking should be children followed by working adults, with the lowest health-care priority going to those over age 80. It sounds harsh, but that is exactly how socialized medicine works in Europe.

So what do you do to protect yourself in the future, especially if you are nearing 65? My suggestion is to start aggressively reducing cellular inflammation by following an anti-inflammatory diet and lifestyle. That’s the only thing you are really entitled to and that will also be the only thing your “rich” uncle can realistically pay for in the future.

References

  1. Callahan D and Nuland S. “The quagmire: how American medicine is destroying itself.” The New Republic. May 19, 2011
  2. Crimmins EM and Beltran-Sanchez H. “Mortality and morbidity trends: is there compression of morbidity?” J Gerontol B Physchol Soc Sci 66: 75-86 (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Another new wrinkle in the cholesterol story

One of the great marketing successes of the pharmaceutical industry has been the linkage between LDL cholesterol levels and heart disease. In essence, the message, “if your LDL cholesterol is high, you are going to die,” is powerful. Unfortunately, the data state otherwise.

It was known in the mid 1990s that oxidized LDL was the primary suspect in the development of atherosclerotic lesions; not natural, non-oxidized LDL. But it was also at this time that the first statin studies began to appear, and that gave the pharmaceutical industry a patented drug to “prevent” heart disease (2). It was such a good story to tell and an even better one to sell. Unfortunately, as I pointed out in an earlier blog, it has never held up well against unbiased scrutiny, especially in patients with high cholesterol levels but without any heart disease.

Part of the reason lies in the data. Shown below is the correlation of LDL cholesterol to heart disease

You can see from this data that there is a higher percentage of cardiovascular disease patients with high LDL cholesterol levels compared with very low levels, but not that much. This explains why about half the people who die from heart disease have normal LDL cholesterol levels (less than 130 mg/dl). It also means that high LDL cholesterol is not a very good predictor of heart disease.

On the other hand, a very different picture emerges if you look at the levels of oxidized LDL levels as shown below.

Even without a background in statistics you can see a very striking relationship in the prediction of heart disease with increasing levels of oxidized LDL levels.

So why don’t physicians use oxidized LDL levels as an indicator of heart disease risk? First, the test is much more difficult to do than a simple cholesterol test. Second, it ruins a great story that is easy to communicate to the patient. Third, the best way of reducing oxidized LDL levels is natural anti-oxidants, such as polyphenols, that have no patent protection (3,4). Reducing LDL cholesterol is simple. Just take a statin drug for the rest of your life. Reducing oxidized LDL cholesterol requires having plenty of antioxidants in your diet with polyphenols the most powerful.

Now there is another new entry into the LDL story. This is “super-sticky” LDL. In an online pre-publication, it was demonstrated that this new type of LDL particle may be even worse than oxidized cholesterol in promoting the development of heart disease (5). This “super-sticky” LDL comes from the formation of advanced glycosylation end products (AGEs). I described this formation of protein-carbohydrate linkages as an integral part of the aging process in my book, “The Anti-Aging Zone,” published more than a decade ago (6).

The best way to reduce the production of “super-sticky” LDL is to reduce blood sugar levels. This helps explain why individuals with diabetes are two to three times more likely to develop heart disease. The best way to reduce elevated blood sugar is the Zone diet. That’s why the latest dietary recommendations for the treatment of diabetes by the Joslin Diabetes Research Center at Harvard Medical School are essentially identical to the Zone diet.

Heart disease remains the number-one cause of death in America. Unfortunately, it is more complex than “taking a statin a day to keep death away”.

References

  1. Maor I and Aviram M. “Oxidized low-density lipoprotein leads to macrophage accumulation of unesterified cholesterol as a result of lysosomal trapping of the lipoprotein hydrolyzed cholesterol ester.” J Lipid Res 35: 803-819 (1994)
  2. Simvastatin Study Group. “Randomized trial of cholesterol lowering in 4,444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S).” Lancet 344: 1383-1389 (1994)
  3. Shafiee M, Carbonneau MA, Urban N, Descomps B, and Leger CL. “Grape and grape seed extract capacities at protecting LDL against oxidation generated by Cu2+, AAPH or SIN-1 and at decreasing superoxide THP-1 cell production.” Free Radic Res 37: 573-584 (2003) (ISSN: 1071-5762)
  4. Chen CY, Yi L, Jin X, Mi MT, Zhang T, Ling WH, and Yu B. “Delphinidin attenuates stress injury induced by oxidized low-density lipoprotein in human umbilical vein endothelial cells.” Chem Biol Interact 183: 105-112 (2010)
  5. Rabbani N, Godfrey L, Xue M, Shaheen F, Geoffrion M, Milne R, and Thornalley PJ. “Glycation of LDL by methylglyoxal increases arterial atherogenicity.” Diabetes 60 doi:10.2337/db09-1455 (2011)
  6. Sears B. “The Anti-Aging Zone.” Regan Press. New York, NY (1999)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

The demise of the Mediterranean diet?

This week is Mediterranean diet week. Unfortunately after 2,000 years, no one really knows what the Mediterranean diet actually consists of. Is it the Italian, Spanish, Moroccan, Egyptian, Greek or Lebanese Mediterranean diet? Each diet is very different from each other. What is clear is that people in the Mediterranean region are becoming fatter and less healthy (1).

Part of the reason for the demise of the benefits of a “Mediterranean diet” is the time it takes to prepare a quality meal. It takes time to purchase fresh vegetables. It takes even more time to prepare them. In a world without globalization, you have a lot more time. Now you are competing with every human on the face of the globe for a job, and the result is time-compression. The first casualty of this time-compression effect of globalization is the inability to cook and consume good food containing high-quality food ingredients. Another sinister aspect of globalization is the reduction in the number of food ingredients being used by the general population. In particular, those food ingredients are the least expensive, have an extended shelf life and can be made into very inexpensive, convenient, and portable (not requiring a knife or fork to eat) processed foods. The only food ingredients that meet those requirements are cheap refined grains and cheap refined vegetable oils. And the low-cost producer of these food ingredients is not China, but the United States.

Fruits and vegetables are really expensive unless you grow them yourself. With urbanization of the Mediterranean region, most people now rely on processed foods and restaurants for their meals. Not surprisingly, is the consumption of cheap, refined grains and vegetable oils, which in the past were alien components to the Mediterranean diet (regardless of the location). Now they have replaced vegetables, fruits and olive oil (the primary food ingredients of a Mediterranean diet) because they are cheaper. For example, vegetables and fruits are now 400 times more expensive for the same number of calories as cheap, refined grains imported from America. Corn oil from America is now five times cheaper than olive oil produced in the Mediterranean region.

The people in the Mediterranean regions are eating the same foods that have produced the Perfect Nutritional Storm in America. This explains why 75 percent of Greeks are now overweight or obese and more than half the populations of Italy, Spain and Portugal are now overweight or obese. They are making the right economic choices (cheap food), but the wrong health choices (an increasingly inflammatory diet).

Even if you were to go back to the original Mediterranean diet (circa Roman times), it is apparently still not the best diet for health. This was demonstrated in a recent publication that compared the Mediterranean diet (50 percent calories as carbohydrates, 20 percent calories as protein, and 30 percent of calories as fat) to a diet that contained 40 percent carbohydrates, 30 percent protein, and 30 percent fat in a cross-over study. The higher protein, lower carbohydrate diet was more satiating and had better clinical results, especially in hormonal responses, than a real Mediterranean diet (2). Besides having a different macronutrient ratio, the other diet was extremely limited in grains and dairy products compared to the Mediterranean diet.

So if you want to follow a diet that is the evolution of the Mediterranean diet, then make it a diet that is higher in low-fat protein, lower in carbohydrates (but rich in vegetables and fruits) and low in omega-6 fats. Sure sounds like the Zone diet, but call me crazy (3).

References

  1. Ciezaldlo A. “Does the Mediterranean diet even exist?” New York Times April 1, 2011
  2. Jonsson T, Granfeldt Y, Erlanson-Albertsson C, Ahren B, and Lindeberg S. “A paleolithic diet is more satiating per calorie than a Mediterranean-like diet in individuals with ischemic heart disease.” Nutr Metab 7:85 (2010)
  3. Sears B. “The Zone.” Regan Books. New York, NY (1995)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

The dangers of over-analyzing too much data in prostate study

In the last week there has been a constant buzz about an online pre-publication of a new research article that suggests that high concentrations of omega-3 fatty acids promote aggressive prostate cancer (1). Well, that really isn’t the case, in spite of the press reports. That’s why you have to carefully read the article before jumping to conclusions.

Prostate cancer, like all cancers, is driven by cellular inflammation. The level of cellular inflammation is defined by the AA/EPA ratio of isolated serum phospholipids. When you analyze the data correctly in that article, you find that there was no difference in the AA/EPA ratio between the low-aggressive, high- aggressive, or control group. In fact, all the groups had the same elevated AA/EPA ratio of 18.8. Since I like to have individuals try to maintain an AA/EPA ratio of less than 3, all of these groups could be considered to be inflamed.

Not surprisingly, when you look at either EPA or AA levels separately in each group, they are identical. It’s only when you look at the DHA levels, do you see a small difference statistically, but it’s meaningless clinically. There was a 2.5 percent increase in the DHA levels in the high-aggressive group compared to the control group. In the paper, authors state their error in measuring DHA is ± 2.4 percent. Call me crazy, but I don’t see the big difference between the reported results and their error measurements. To further cloud the results, the authors also find that the levels of trans-fatty acids are lower in the aggressive prostate cancer patients than the controls. So I guess if you wanted to take their data at face value, DHA makes prostate cancer more aggressive and trans-fatty acids found in junk foods make prostate cancer less aggressive.

I believe this is simply a case of over-interpretation of massive amounts of collected data. If you get enough data points, you can always make some type of correlation, but that’s all it is. At some point you also have to allow common sense to enter the final analysis.

Nonetheless, let’s say their data might be correct. How could excess DHA increase the aggressiveness of any cancer? Well, it might decrease the levels of dihomo gamma linolenic acid (DGLA) as I have explained in many of my books (2-5). DGLA is the building block for a powerful group of anti-inflammatory eicosanoids, and its formation is inhibited by DHA. Depressing DGLA levels would reduce the body’s ability to hold back the inflammation that drives the tumor. Unfortunately, with all the data they accumulated, they forgot to publish the changes in the DGLA levels in the various groups. Oops.

So even if there were not any changes in the AA/EPA ratio between groups, a depression of DGLA levels in the aggressive prostate cancer group would easily explain the clinical observation. Unfortunately, that interpretation requires an extensive background in understanding eicosanoid biochemistry, which is not easily found in academic clinical-research centers.

This is not the first time that the potential benefits of DHA are in question. In the largest cardiovascular intervention study ever done, it was demonstrated that adding high levels of EPA to the diet of Japanese patients with high cholesterol levels (who already with a very low AA/EPA ratio of 1.6), dramatically decreased their likelihood of future cardiovascular events (6). This reduction was only correlated with increases in EPA levels as well as with a decrease in the AA/EPA ratio from an already low 1.6 to an even lower 0.8 (7). The levels of DHA in these patients had no significance for predicting future cardiovascular events.

Likewise other studies using DHA alone to treatment post-partum depression, improve neurological functioning of children or treating Alzheimer’s have also been found to be negative (8,9).

It’s not that DHA is bad, it just doesn’t do much to reduce cellular inflammation. DHA does a lot of other useful things, but reducing cellular inflammation in not one of them.

References

  1. Brasky TM, Till C, White E, Neuhouser ML, Song X, Goodman P, Thompson IM, King EB, Albanes D, and Kristal AR. “Serum phospholipid fatty acids and prostate cancer risk.” Amer J Epidem 173: doi 10:1093/aje/kwr9027 (2011)
  2. Sears, B. “The Zone.” Regan Books. New York, NY (1995)
  3. Sears, B. “The OmegaRx Zone.” Regan Books. New York, NY (2002)
  4. Sears, B. “The Anti-inflammation Zone.” Regan Books. New York, NY (2005)
  5. Sears, B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)
  6. Matsuzaki M, Yokoyama M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, and Matsuzawa Y. “Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease.” Circ J 73:1283-1290 (2009)
  7. Itakura H, Yokoyama M, Matsuzaki M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, and Matsuzawa Y. “Relationships between Plasma Fatty Acid Composition and Coronary Artery Disease.” J Atheroscler Thromb 18:99-107 (2011)
  8. Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, and Ryan P. “Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial.” JAMA 304; 1675-1683 (2010)
  9. Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, Galvin JE, Emond J, Jack CR, Weiner M, Shinto L, and Aisen PS. “Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial.” JAMA 304: 1903-1911 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.