A short history of the human food supply

The real goal of nutrition is the management of cellular inflammation. Increased cellular inflammation makes us fat, sick, and dumb (how about overweight, ill, and less intelligent). Strictly speaking, diets are defined by their macronutrient balance. This is because that balance determines the resulting hormonal responses. This doesn’t mean you can ignore the impact of various food ingredients on the generation of cellular inflammation.

This is why I categorize food ingredients into three major classes depending on when they were introduced into the human diet. The more ancient the food ingredients, the less damaging inflammatory impact they will have on turning genes off and on (i.e. gene expression). This is because the greater the period of time our genes have co-evolved with a given food ingredient, the more our body knows how to handle them. Unfortunately, human genes change slowly, but changes in our food supply can happen very rapidly.

With that as a background, let me describe the three major categories of food ingredients, especially in terms of their introduction to the human diet.

Paleolithic Ingredients

This category includes food ingredients that were available more than 10,000 years ago. Our best evidence is that humans first appeared as a new species in Southern Africa about 200,000 years ago (1). For the next 190,000 years, food ingredients of the human diet consisted of animal protein (grass-fed only), fish, animal and fish fats, fruits, vegetables, and nuts. I call these Paleolithic ingredients. This means for the first 95 percent of our existence as a species, these were the only food ingredients that genes were exposed to. As a result of 190,000 years of co-existence with our genes, these food ingredients have the least inflammatory potential on our genes.

Our best estimate of the macronutrient composition of the typical Paleolithic diet some 10-15,000 years ago was 25-28 percent protein, 40 percent carbohydrate, 32-35 percent fat with a very high intake of EPA and DHA (about 6 grams per day) and a 1:1 ratio of omega-6 to omega-3 fats (2). This is basically the composition of the anti inflammatory diet (3-5). If you use only Paleolithic ingredients, then you are almost forced to follow an anti inflammatory diet. The food ingredients are more restrictive, but the increased anti-inflammatory benefits are well worth it.

Mediterranean Ingredients

The second group of food ingredients represents those food choices that were available 2,000 years ago. We started playing Russian roulette with our genes 10,000 years ago as we started to introduce a wide variety of new food ingredients into the human diet. First and foremost was the introduction of grains, but not all at the same time. Wheat and barley were introduced about 10,000 years ago with rice and corn coming about 3,000 years later. Relative latecomers to the grain game were rye (about 5,000 years ago) and oats (about 3,000 years ago).

At almost the same time came the first real use of biotechnology. This was the discovery that if you fermented grains, you could produce alcohol. Alcohol is definitely not a food ingredient that our genes were prepared for (and frankly our genes still aren’t). I think it only took mankind about 10 years to learn how to produce alcohol, which probably makes the first appearance of beer occurring some 9,990 years ago. Wine was a relatively late arrival appearing about 4,000 years ago. With the domestication of animals (some 8,000 years ago) came the production of milk and dairy products. About 5,000 years ago, legumes (beans) were also introduced. Legumes tend to be rich in many anti-nutrients (such as lectins) that must be inactivated by fermentation or boiling. Needless to say, these anti-nutrients are not the best food ingredients to be exposed to.

I call this second group of food ingredients Mediterranean ingredients since they are the hallmark of what is commonly referred to as a “Mediterranean diet” (even though the diets as determined by macronutrient balance in different parts of the Mediterranean region are dramatically different). Those cultures in the Mediterranean region have had the time to genetically adapt to many of these new ingredients since all of these ingredients existed about 2,000 years ago.

Unfortunately, many others on the planet aren’t quite as fortunate. That’s why we have lactose intolerance, alcohol-related pathologies, celiac disease, and many adverse reactions to legumes that have not been properly detoxified. As a result these Mediterranean ingredients would have greater potential to induce increased levels of cellular inflammation than Paleolithic ingredients. However, at least they were better than the most recent group, which I term as, the “Do-You-Feel-Genetically-Lucky” group.

Do-You-Feel-Genetically-Lucky Ingredients

Unfortunately, these are the food ingredients that are currently playing havoc with our genes, especially our inflammatory genes. You eat these ingredients only at your own genetic risk. The first of these was refined sugar. Although first made 1,400 years ago, it didn’t experience a widespread introduction until about 300 years ago. With the advent of the Industrial Revolution came the production of refined grains. Products made from refined grains had a much longer shelf life, were easier to eat (especially important if you had poor teeth), and could be mass-produced (like breakfast cereals).

However, in my opinion the most dangerous food ingredient introduced in the past 200,000 years has been the widespread introduction of refined vegetable oils rich in omega-6 fatty acids. These are now the cheapest source of calories in the world. They have become ubiquitous in the American diet and are spreading worldwide like a virus. The reason for my concern is that omega-6 fatty acids are the building blocks for powerful inflammatory hormones known as eicosanoids. When increasing levels of omega-6 fatty acids in the diet were combined with the increased insulin generated by sugar and other refined carbohydrates, it spawned a massive increase in cellular inflammation worldwide in the past 40 years starting first in America (6). It is this Perfect Nutritional Storm that is rapidly destroying the fabric of the American health- care system.

The bottom line is that the macronutrient balance of the diet will generate incredibly powerful hormonal responses that can be your greatest ally or enemy in controlling cellular inflammation. Unless you feel incredibly lucky, try to stick with the food ingredients that give your genes the best chance to express themselves.

References

  1. Wells S. “The Journey of Man: A Genetic Odyssey.” Random House. New York, NY (2004)
  2. Kuipers RS, Luxwolda MF, Dijck-Brouwer DA, Eaton SB, Crawford MA, Cordain L, and Muskiet FA. “Estimated macronutrient and fatty acid intakes from an East African Paleolithic diet.” Br J Nutr 104: 1666-1687 (2010)
  3. Sears, B. “The Zone.” Regan Books. New York, NY (1995)
  4. Sears, B. “The OmegaRx Zone.” Regan Books. New York, NY (2002)
  5. Sears, B. “The Anti-Inflammation Zone.” Regan Books. New York, NY (2005)
  6. Sears B. “Toxic Fat.” Thomas Nelson. Nashville, TN (2008)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

How to get depressed quickly

Your grandmother always said that high purity omega-3 oil was “brain food”. Now we are discovering more of the molecular mechanisms that are making grandma’s wisdom from yesteryear into today’s molecular biology breakthroughs.

The newest study that validates grandma’s wisdom will be reported in an upcoming issue of Nature Neuroscience and demonstrates the devastating impact that a lifetime diet that is deficient in omega-3 fatty acids can have on mood and impaired emotional behavior (1).

What enables the brain to make new connections is the endocannabinoid pathway that controls remodeling (i.e. plasticity) of neurons. In particular, the endocannabinoids must interact with their receptors to initiate neuronal remodeling. Without the adequate dietary intake of omega-3 fatty acids, the animals became far more depressed than their genetically identical cousins. The effect of the omega-3 fatty acid deficiency was not a general effect, but localized in the pre-frontal cortex, the area of the brain that is implicated in emotional rewards. Both EPA and DHA were depressed in the pre-frontal cortex. In addition, the levels of arachidonic acid (AA) were significantly increased in the same brain region thereby increasing the extent of neuro-inflammation. An earlier study indicated that it only takes one generation of deficiency of omega-3 fatty acids to increase depression and aggression in rats (2).

This study also helps to explain why high doses of omega-3 fatty acids improve depression in various clinical studies (3-6).

I suspect the mechanism may be the following. The depressed levels of DHA would decrease the fluidity of the neural membrane. This would make it more difficult for the activated endocannabinoid receptor to transmit its signal to the interior of the neuron necessary for the initiation of new neural synthesis. The depression of EPA as well as the increase in AA in the pre-frontal cortex would increase the levels of neuro-inflammation in the brain that would further inhibit the signaling mechanisms necessary to initiate the remodeling of neural tissue.

But to be effective, you must take a therapeutic dose of omega-3 fatty acids. That can be best determined by the AA/EPA ratio in the blood (7). This is because the brain doesn’t make these long-chain fatty acids, but it can readily take them up from the blood.

As usual your grandmother was correct when she called high purity omega-3 oil “brain food”. Her wisdom was in line with epidemiological studies that indicate lowered fish consumption is strongly associated with increased depression (8).

References

  1. Lafourcade M, Larrieu T, Mato S, Duffaud A, Sepers M, Matias I, De Smedt-Peyrusse V, Labrousse VF, Bretillon L, Matute C, Rodriquez-Puertas R, Laye S, and Manzoni OJ. “Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions.” Nature Neuroscience doi: 10:1038/nn.2736 (2011)
  2. De Mar JC, Ma K, Bell JM, Igarashi M, Greenstein D, and Rapoport SI. “One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats.” J Lipid Res 47: 172-180 (2006)
  3. Rondanelli M, Giacosa A, Opizzi A, Pelucchi C, La Vecchia C, Montorfano G, Negroni M, Berra B, Politi P, and Rizzo AM. “Effect of omega-3 fatty acids supplementation on depressive symptoms and on health-related quality of life in the treatment of elderly women with depression: a double-blind, placebo-controlled, randomized clinical trial.” J Am Coll Nutr 29: 55-64 (2010)
  4. da Silva TM, Munhoz RP, Alvarez C, Naliwaiko K, Kiss A, Andreatini R, and Ferraz AC. “Depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation.” J Affect Disord 111: 351-359 (2008)
  5. Stahl LA, Begg DP, Weisinger RS, and Sinclair AJ. “The role of omega-3 fatty acids in mood disorders. Curr Opin Investig Drugs 9: 57-64 (2008)
  6. Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E, Cress KK, and Marangell LB. “Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial.” Arch Gen Psychiatry 56: 407-412 (1999)
  7. Adams PB, Lawson S, Sanigorski A, and Sinclair AJ. “Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression.” Lipids 31: S157-161 (1996)
  8. Hibbeln JR. “Fish consumption and major depression.” Lancet 351: 1213 (1998)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

When is a diet not a diet?

One of the major problems in nutrition is the lack of rigor in describing diets. The first problem is that the root of the word diet comes from the ancient Greek phrase “way of life”. A diet is not a short-term plan to fit into a swimsuit, but rather it is a way of life to reach a lifetime goal, like a longer and better life. If your goal is less grand like simply to lose weight, then to lose that weight and keep it off, you had better maintain that diet for the rest of your life. From that perspective, a diet like the Grapefruit diet doesn’t make much sense.

The second problem is the lack of precision in defining a diet. My definition of a diet is based on the macronutrient balance that ultimately determines hormonal responses. From this perspective, there are really only four diets based on the glycemic load, assuming that each diet contains the same number of calories.

Diet Common Name
Very low glycemic-load diet Ketogenic (i.e. Atkins diet)
Low glycemic-load diet Non-ketogenic (i.e. Zone Diet)
High glycemic-load diet American Heart (or Diabetes or Cancer, etc.) Association diet
Very high glycemic-load diet Strict vegetarian (i.e. Ornish diet)

Assuming these diets have an equal number of calories, you can then rank them in terms of the total amount of calories coming from protein, carbohydrates and fat as shown below:

Diet Macronutrient Composition
Very low glycemic-load diet 30% P, 10% C, and 60% F
Low glycemic-load diet 30% P, 40% C, and 30% F
High glycemic-load diet 15% P, 55% C, and 30% F
Very high glycemic-load diet 10% P, 80% C, and 10% F

You can see that depending on the macronutrient composition of the diet you choose to follow, it will generate very different hormonal responses. A ketogenic diet will induce increased cortisol levels that make you fat and keep you fat. High-glycemic diets induce excess insulin levels that make you fat and keep you fat. It’s only a low-glycemic diet that has been shown to burn fat faster (1) as well as maintain weight loss most effectively (2).

That’s why unless you define a diet carefully in terms of macronutrient balance, you can’t ever undertake any meaningful nutritional research to validate whether or not it achieves its stated goal. This is why most diet studies produce such conflicting results.

The wild card is which food ingredients you choose for a particular diet. This is where much of the confusion emerges as people throw around arbitrary terms like a Paleolithic diet or a Mediterranean diet. What the heck is a Mediterranean diet? Is it the diet from Morocco, Lebanon, Italy, or Spain? What you can do, however, is to review the food ingredients found in these diets.

For example, Paleolithic food ingredients would consist only of fruits, vegetables, nuts, grass-fed beef, eggs, and fish. A pretty limited group of foods to choose from, but it was all that was available to man 10,000 years ago. Mediterranean food ingredients include all of those in the Paleolithic group but now adding whole grains, alcohol, legumes, and dairy products. These were the dietary choices available about 2,000 years ago — a more diverse number of food choices for a particular diet, but now with a greater potential for generating inflammatory responses. Finally, there are the “Do-You-Feel-Lucky” food ingredients. This includes very recent additions to the human diet, such as sugar, refined carbohydrates and vegetable oils. These are food ingredients that make processed foods possible. However, they carry with them the greatest potential to increase cellular inflammation. Remember, it is increased cellular inflammation that makes you fat, sick, and dumb.

So if you want to be correct about the use of the word diet, then you should use the right terms. It could be an anti inflammatory diet using only Paleolithic food ingredients (i.e. a Paleo Zone Diet), or an anti inflammatory diet using only Mediterranean food ingredients (i.e. a Mediterranean Zone Diet), or even an anti inflammatory diet using the “Do-You-Feel-Lucky” food ingredients. This designation includes the most recent additions (sugar, refined carbohydrates, and vegetable oils) that have the greatest impact on inducing cellular inflammation, regardless of the macronutrient balance. Ultimately important are the hormonal responses of the macronutrient balance of the diet (especially after avoiding the worst offenders in the “Do-You-Feel-Lucky” group). The more restrictive your choices for food ingredients for any diet, the better the hormonal outcome for that particular diet. In particular, the primary clinical outcome for the anti inflammatory diet is the life-long management of cellular inflammation. And for that clinical parameter, the clinical research has found the anti inflammatory diet to be the clear winner regardless of the food ingredients selected (3-5).

References

  1. Layman DK, Evans EM, Erickson D, Seyler J, Weber J,; Bagshaw D, Griel A, Psota T, and Kris-Etherton P. “A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults.” J Nutr 139: 514-521 (2009)
  2. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S; Holst C, Saris WH, and Astrup A. “Diets with high or low protein content and glycemic index for weight-loss maintenance.” N Engl J Med 363: 2102-2113 (2010)
  3. Pereira MA, Swain J, Goldfine AB, Rifai N, and Ludwig DS. “Effects of a low glycemic-load diet on resting energy expenditure and heart disease risk factors during weight loss.” JAMA 292: 2482-2490 (2004)
  4. Johnston CS, Tjonn SL, Swan PD, White A, Hutchins H, and Sears B. “Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.” Am J Clin Nutr 83: 1055-1061 (2006)
  5. Pittas AG, Roberts SB, Das SK, Gilhooly CH, Saltzman E, Golden J, Stark PC, and Greenberg AS. “The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss.” Obesity 14: 2200-2209 (2006)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Pass the polyphenols

Considering that virtually nothing was written about the health benefits of polyphenols before 1995, it continues to amaze me the amount of health benefits this group of nutrients generates. This is primarily due to our growing understanding of how these phytochemicals interact with the most primitive parts of our immune system that have been conserved through millions of years of evolution.

Three new studies add to this growing knowledge. In the January 2011 issue of the American Journal of Clinical Nutrition, it was reported that eating one serving a week of blueberries could reduce the risk of developing hypertension by 10 percent (1). Since a serving size of fruit is defined as ½ cup, that serving size contains about 65 grams of blueberries. Put that into more precise molecular terms, this serving size would provide about 4,000 ORAC units or about the same amount of ORAC units as a glass of wine. The researchers speculated that there was a subclass of polyphenols (which includes delphinidins) that appear to be responsible for most of the effects. So if eating one serving of blueberries (½ cup) once a week is good for reducing the risk of hypertension, guess what the benefits of eating 1 cup of blueberries every day might be? The answer is probably a lot.

Speaking of red wine, in the second study in Biochemical and Biophysical Research Communications researchers found that giving high levels of isolated polyphenols from red wine demonstrated that exercise endurance in older rats could be significantly enhanced. Very good news for old folks like me. They hypothesized the effects may be directly related to “turning on” genes that increase the production of anti-oxidant enzymes (2). The only catch is that the amount of red wine polyphenols required to reach these benefits would equate to drinking about 20-30 glasses of red wine per day.

The final study in Medicine & Science in Sports and Exercise demonstrates that cherry juice rich in polyphenols reduces muscle damage induced by intensive exercise in trained athletes. This reduction in muscle damage was correlated with decreased levels of inflammatory cytokines (3). The reduction of cytokine expression is one of the known anti-inflammatory benefits of increased polyphenol intake.

Three pretty diverse studies, yet it makes perfect sense if you understand how polyphenols work. Polyphenols inhibit the overproduction of inflammatory compounds made by the most ancient part of the immune system that we share with plants. The only trick is taking enough of these polyphenols. To get about 8,000 ORAC units every day requires eating about a cup of blueberries (lots of carbohydrates) or two glasses of red wine (lots of alcohol), or half a bar of very dark chocolate (lots of fat) or 0.3 g of highly purified polyphenol powder in a small capsule (with no carbohydrates, no alcohol, and no saturated fat). And if you are taking extra high purity omega-3 oil, exercising harder, or have an inflammatory disease, you will probably need even more polyphenols. It doesn’t matter where the polyphenols come from as long as you get enough. That’s why you eat lots of colorful carbohydrates on an anti inflammatory diet.

References

  1. Cassidy A, O’Reilly EJ, Kay C, Sampson L, Franz M, Forman J, Curhan G, and Rimm EB. “Habitual intake of flavonoid subclasses and incident hypertension in adults.” Am J Clin Nutr 93: 338-347 (2011)
  2. Dal-Ros S, Zoll J, Lang AL, Auger C, Keller N, Bronner C, Geny B, Schini-Kerth VB. “Chronic intake of red wine polyphenols by young rats prevents aging-induced endothelial dysfunction and decline in physical performance: Role of NADPH oxidase.” Biochem Biophys Res Commun 404: 743-749 (2011)
  3. Bowtell JL, Sumners DP, Dyer A, Fox P, and Mileva KN. “Montmorency cherry juice reduces muscle damage caused by intensive strength exercise”. Med Sci Sports Exerc 43: online ahead of print doi: 10.1249/MSS.obo13e31820e5adc (2011)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

The new “eat less” USDA Food Pyramid

For the first time in recent history the new USDA dietary guidelines finally reflect the realization that America has an obesity epidemic.

Five years ago, its dietary guidelines were best characterized as “eat more; exercise more”. After all, their constituency is not the American public but American agribusiness. Due to the constant fear of incurring the wrath of powerful food lobbies, the USDA dietary recommendations were virtually useless in preventing the spread of obesity and diabetes in America.

Now the Guidelines are somewhat helpful as they suggest that fruits and vegetables should occupy one-half your plate. Although that volume is not equal to the two-thirds of the plate that I have advocated for more than 15 years, at least it is a start. Unfortunately, the “eat-less” message is more deeply buried within the Guidelines.

This is because the “eat-less” message is a difficult one to digest for American agribusiness, whose revenue growth is based on “eat more”. Today agribusiness produces more than 4,000 calories per day for every American. For Americans to eat less, every sector of agribusiness (except the fruit and vegetable sector) has to make less money. In reality these new guidelines don't come out and actually say eat less of anything.

When the secretary of agriculture was asked if the guidelines might suggest something like eating less meat, his response was like asking President Clinton his definition of sex — it depends. (Well, that remark will drive comments for sure!). Obviously, he didn't want to offend the meat lobby.

The one segment of the agribusiness sector the USDA was willing to throw under the bus was the salt lobby due to the strong USDA message to eat less salt. Of course, the Salt Institute responded, “Obesity, not salt, is the main culprit in rising blood pressure rates”. The obvious implication is salt has no calories; therefore, the blame should be on those sectors of agribusiness that sell products that contain calories. Unfortunately, it is the responsibility of the USDA to promote those specific sectors.

If you are encouraged to increase the consumption of fruits and vegetables, eat more seafood (just forget about contamination), and replace dairy with soy protein, then what do you have to reduce in order to eat fewer calories? The usual suspects would be saturated fats, (which Harvard now tells us aren't so bad for heart disease), and sugar. Unfortunately, those recommendations are buried deep within the report. Without those ingredients it is difficult to make the tasty, cheap processed foods that drive the profits of agribusiness. This sounds very similar to our current budget crisis: No one wants to raise taxes, and no one wants to lower spending, although everyone wants to reduce the deficit.

Finally, the new guidelines contain the message that there is “no optimal proportion of macronutrients that can facilitate weight loss or assist in maintaining weight loss”. Maybe they should read the DIOGENES study published in the New England Journal of Medicine that came to an opposite conclusion (1). Of course, why let published nutritional science stand in the way of intuitive eating. I guess we will have to wait another five years for the next update of the USDA Guidelines.

References

  1. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, Martinez JA, Handjieva-Darlenska T, Kunesova M, Pihlsgard M, Stender S, Holst C, Saris WH, and Astrup A. “Diets with high or low-protein content and glycemic index for weight-loss maintenance.” N Engl J Med 363: 2102-2113 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Breast cancer and inflammation

Breast cancer is probably the greatest fear women have, even though they are 10 times more likely to die from heart disease. Yet both diseases are driven by cellular inflammation.

Cellular inflammation occurs when the most primitive part of your immune system (the innate immune system) is activated. The key player in the innate immune system is a gene transcription protein known as nuclear factor-kappaB (NF-κB). Once activated, NF-κB moves into the cell’s nucleus and causes the expression of a wide variety of pro-inflammatory mediators that accelerate the growth of the tumor. A recent publication in Cancer Research has demonstrated that complete inhibition of the NF-κB in the breast tissue prevents the development of breast cancer in animal models (1).

Of course, there is one slight problem with this approach. If you inhibit NF-κB too much, you make yourself a sitting target for microbial invasion. So the question is what activates the NF-κB in the first place? The answer is the diet, and specifically how the diet increases the levels of arachidonic acid, as I described in my most recent book, “Toxic Fat” (2). As the levels of arachidonic acid increase in the cell, there is an increased formation of inflammatory compounds (i.e. leukotrienes) that activate NF-κB (3).

So what might the best approach be for reducing the risk of breast cancer? The obvious answer is to decrease the levels of arachidonic acid in the breast tissue. The best way would be to follow a strict anti inflammatory diet to reduce the formation of arachidonic acid in the first place (4).

Unfortunately, most women (and men) are not willing to take that step. That being the case, then what other dietary approach can be used? I would suggest that supplementing the diet with high-purity omega-3 fatty acid concentrates rich in EPA and DHA is the one approach that everyone can follow. This is especially true since it takes only 15 seconds a day. The benefits of this approach was recently demonstrated in another article published last year in the American Journal of Clinical Nutrition that demonstrated supplementation with purified omega-3 concentrates can dramatically increase the levels of omega-3 fatty acids in the breast tissue of women who have a high-risk potential of developing breast cancer (5).

Of course, if you not only take high-purity omega-3 fatty acid concentrates, but also follow the anti inflammatory diet, then you will have done every possible dietary intervention to reduce the activation of NF-κB in the target tissue for breast cancer (not to mention also reducing the risk for heart disease). Of course, there are some side effects to this dietary approach: You become thinner, smarter and happier in the process.

References

  1. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, Ojeifo J, Jiao X, Yeow WS, Katiyar S, Shirley LA, Joyce D, Lisanti MP, Albanese C, and Pestell RG. “The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion.” Cancer Res 24: 10464-10473 (2010)
  2. Sears B. “Toxic Fat.” Thomas Nelson. Nashville, TN. (2008)
  3. Sanchez-Galan E, Gomez-Hernandez A, Vidal C, Martin-Ventura JL, Blanco-Colio LM, Munoz-Garcia B. Ortega L, Egido J, and Tunon J. “Leukotriene B4 enhances the activity of nuclear factor-kappaB pathway through BLT1 and BLT2 receptors in atherosclerosis.” Cardiovasc Res 81: 216-225 (2009)
  4. Sears B. “The Zone.” Regan Books. New York, NY (1995)
  5. Yee LD, Lester JL, Cole RM, Richardson JR, Hsu JC, Li Y, Lehman A, Belury MA, and Clinton SK. “Omega-3 fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition.” Am J Clin Nutr 91:1185–1194 (2010)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Lights off for weight loss

I have often said that weight loss is a lot more complicated than simply “eating less and exercising more”. New research indicates how much more complicated weight gain is due to circadian rhythms. Our brain and virtually all of our cells are programmed to run on a 24-hour cycle to help us optimize future events (like sleep and eating) that are essential for life. In fact, even fungi have these biological clocks. There is a central clock in the brain that responds to light and dark by releasing the hormone melatonin. Melatonin, as well as other hormones, prepares the individual cells in different organs for an anticipated stimulus that allows those organs to rapidly respond with the greatest efficiency. The adipose tissue is one of those organs. This is why the uptake and release of fatty acids by the adipose tissue has a strong circadian rhythm (1). One hormone that is exclusively released by the fat cells is leptin. Both leptin and ghrelin (the hunger hormone released from the gut) are also under circadian control (2).

The bottom line is that as our light/dark cycles are becoming more distorted, the hormones that affect our appetite are also being adversely affected. It is known that sleep-deprived individuals are more inflamed (3) as well as have abnormalities in glucose metabolism (4).

New research indicates that increased light during the normal sleeping cycle for mice increases their weight and their fat mass (5). Most disturbing is that you only need a very dim light on during their normal sleep cycle to increase weight gain in the animals. The more intense the light during their normal sleep cycle, the greater the weight gain.

This is also true for humans, as discussed in an online pre-publication release that will be published in the March 2011 issue of the Journal of Endocrinology and Metabolism (6). In this study, subjects were exposed to dim lighting (about one-half the intensity of a typical office light) for eight hours prior to bedtime; then the release of melatonin would be completely suppressed for about 90 minutes after they started sleeping. Just like the mice, if the light was on, even dimly, while they were sleeping, their melatonin levels were depressed by about 50 percent. The less melatonin you release during sleep, the more body fat you accumulate.

This leads to an interesting thought. It is known that increased television viewing and prolonged computer use leads to increased weight gain. It has always been assumed that this was because the person was not exercising. This new data strongly suggests it is not a lack of physical activity that is the problem, but the disturbances in circadian rhythms that may be the underlying problem. It’s hard to exercise in the dark, but you sure can sleep better and get thinner in the process if you keep the lights off.

References

1. Bray MS and Young ME. “Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte.” Obesity Rev 8: 169-181 (2006)

2. Karla SP, Bagnasco M, Otukonyong EE, Dube MG, and Kalra PS. Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity.” Regulatory Peptides 111: 1-11 (2003)

3. Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, and Chrousos GP. “Elevation of plasma cytokines in disorders of excessive daytime sleepiness.” J Clin Endocrinol Metab 82: 1313-1316 (1997)

4. Spiegel K, Leproult R, and Van Cauter E. “Impact of sleep debt on metabolic and endocrine function.” Lancet 354: 1435-1439 (1999)

5. Fonken LK, Workman, JL, Walton JC, Weil ZM, Morris JS, Haim A, and Nelson RJ. “Light at night increases body mass by shifting the time of food intake.” Proc Natl Acad Sci USA 107: 18664-18669 (2010)

6. Gooley JJ, Chamberlain K, Smith KA, Shalsa SBS, Rajaatnam SMW, van Reen E, Zeitzer JM, Czeisler CA, and Lockley SW. “Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans.” J Clin Endocrino Metabol doi:10.1210/jc.2010-2098

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.

Coffee and diabetes: What’s the connection?

One of the great controversies in nutrition is the role of coffee and human health. On the one hand, coffee is the primary source of polyphenols in the American diet because of the lack of consumption of fruits and vegetables. On the other hand, coffee is rich in caffeine, an alkaloid that acts as a stimulant on the central nervous system and is known to be an addictive agent (1). In fact, Roland Griffiths, professor of Behavioral Biology at the John Hopkins School of Medicine (and my old college roommate), says, “Caffeine is the world’s most widely used mood-altering drug.” So the question remains is caffeine good for you?

No one knows for sure, but one interesting point has been made that it appears the more coffee you drink, the lower your risk for developing diabetes (2). In fact, if you drink more than four cups of coffee per day, you decrease your risk of diabetes by 50 percent. This new research demonstrates that coffee increases the levels of sex hormone-binding globlin (SHBG) in the blood. As I pointed out in my book “The Anti-Aging Zone,” SHBG plays an important role in sequestering the levels of estrogen and testosterone in the blood so that levels of these unbound sex hormones that can interact with their receptors are tightly regulated (3). Usually as insulin resistance increases, the levels of SHBG decrease in the blood (4). This can lead to an over-stimulation of the receptors by the unbound sex hormones resulting in increased risk for breast and prostate cancer development.

What in the coffee actually causes the increase in SHBG is unknown, but what is known is that once you decaffeinate the coffee, all its benefits on the elevation of SHBG levels and any reduction in risk for diabetes disappear.

It is highly unlikely that caffeine by itself is beneficial for reducing type 2 diabetes, since there were no benefits related to drinking tea or to total daily caffeine intake (2). Perhaps some other compound that was also extracted with the caffeine may play a role in the reduction of type 2 diabetes.

So what really happens when you decaffeinate coffee? First, you soak the beans in water to remove the caffeine and flavors as well as the polyphenols. Then you treat the water with organic solvents (methylene chloride or ethyl acetate) to remove the caffeine (as well as many of the polyphenols and much of the flavor). Then (assuming you have removed all of the organic solvent), you add back the treated water extract to the beans to hopefully reabsorb some of the flavors back into them. Obviously, not all the flavors or polyphenols return since the resulting taste is far less robust than the original coffee bean.

So it seems to me that exploring what else has been extracted in addition to the caffeine may lead to new dietary treatments for diabetes. Whether that will be done is highly unlikely. Instead of waiting for such experiments, you might as well follow the best treatment for preventing diabetes, which is following the anti inflammatory diet for a lifetime. That is how you control cellular inflammation, which is the driving force for development of type 2 diabetes (5,6).

References

1. Juliano LM and Griffiths RR. “A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features.” Psychopharmacology 176: 1-29 (2004)

2. Goto A, Song Y, Chen BH, Manson JE, Buring JE, and Liu S. “Coffee and caffeine consumption in relation to sex hormone-binding globulin and risk of type 2 diabetes in postmenopausal women.” Diabetes 60: 269-275 (2011)

3. Sears B. “The Anti-Aging Zone.” Regan Books. New York, NY (1999)

4. Akin F, Bastemir M, and Alkis E. “Effect of insulin sensitivity on SHBG levels in premenopausal versus postmenopausal obese women.” Adv Ther 24: 1210-1220 (2007)

5. Sears B. “Anti-inflammatory diets for obesity and diabetes.” J Coll Amer Nutr 28: 482S-491S (2009)

6. Sears B. “The Anti-Inflammation Zone.” Regan Books. New York, NY (2005)

Nothing contained in this blog is intended to be instructional for medial diagnosis or treatment. If you have a medical concern or issue, please consult your personal physician immediately.